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Abstract

Graph theory and knot theory are two well established mathematical �elds which present
profound interactions. This thesis focuses on investigating some knot theory problems from
a computational point of view and drawing inspiration from results and methods stemming
from graph theory.

The �rst problem we address concerns the decidability of a knot invariant. The genus
of a knot is a classical knot invariant: it is the minimal genus of an embedded orientable
surface in the 3-dimensional space admitting the knot as its boundary. It is now fairly well
understood from a computational perspective. On the contrary, no algorithm is known for its
four-dimensional variants, both in the smooth and in the topologically locally �at category.
We investigate a class of knots and links called Hopf arborescent links, which are obtained as
the boundaries of surfaces constructed by iterated plumbings of Hopf bands. We show that
for such links, computing the genus defects, which measure how much the four-dimensional
genera di�er from the classical genus, is decidable. Our proof is non-constructive and is
obtained by proving that a containment relation on surfaces associated with Hopf arborescent
links forms a well-quasi-order.

The second problem we tackle is motivated by the existence of e�cient algorithms to
compute many knot invariants and properties on diagrams of low treewidth. It was recently
proved that there exist knots which do not admit any diagram of low treewidth, and the
proof relied on intricate low-dimensional topology techniques. We initiate here a thorough
investigation of tree decompositions of knot diagrams (or more generally, diagrams of spatial
graphs) using ideas from structural graph theory. We de�ne an obstruction on spatial em-
beddings that forbids low treewidth diagrams, and we prove that it is optimal with respect
to a related width invariant. We then show the existence of this obstruction whenever an
embedding into a surface with high compression-representativity exists, which is the case
for torus knots. Thus, we provide a new and self-contained proof that those do not admit
diagrams of low treewidth.

Finally, we shift our focus toward the complexity of knot diagrams throughout the action
of Reidemeister moves. Recognising the trivial knot is a fundamental question of knot theory.
A natural way to attack this problem is by applying Reidemeister moves on a diagram in a
brute force or random manner until the diagram corresponds to a circle. It turns out that
the number of crossings of some unknot diagrams must increase during the execution of this
algorithm. No super constant lower bound is known on how many such crossings need to be
added during the execution of similar algorithms. The problem of deciding whether two links
are split i.e., can be separated by a sphere, is approachable in the same way and presents the
same issue. We prove that there exist link diagrams that require an arbitrarily large number
of added crossings to be split via this method.

Keywords: Knot theory, Computational topology, Structural graph theory, Knot dia-
gram, Geometric topology
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Résumé

La théorie des graphes et la théorie des n÷uds sont deux célèbres domaines mathématiques
qui présentent de profondes interactions. Cette thèse se concentre sur l'étude de certains
problèmes de théorie des n÷uds d'un point de vue informatique et en s'inspirant de résultats
et méthodes issues de la théorie des graphes.

Le premier problème que nous abordons concerne la décidabilité d'un invariant de n÷ud.
Le genre d'un n÷ud est un invariant classique : c'est le genre minimal d'une surface orientable
plongée dans l'espace de dimension 3 qui est bordée par le n÷ud. De nos jours, il est assez
bien compris d'un point de vue informatique. En revanche, aucun algorithme n'est connu
pour ses variantes en dimension 4, à la fois dans la catégorie des variétés lisses et dans celle
des variétés localement plates. Nous étudions une classe de n÷uds et d'entrelacs appelés
entrelacs arborescents de Hopf, qui sont obtenus comme bords de surfaces construites par
des plombages itérés de bandes de Hopf. Nous montrons que, sur ces entrelacs, le calcul des
défauts de genre, qui mesurent à quel point les genres quadridimensionnels di�èrent du genre
classique, est décidable. Notre preuve est non constructive et est obtenue en prouvant qu'une
relation d'inclusion sur les surfaces associées aux entrelacs arborescents de Hopf forme un bel
ordre.

Le deuxième problème que nous attaquons est motivé par l'existence d'algorithmes e�-
caces pour calculer de nombreux invariants et propriétés de n÷uds sur des diagrammes de
faible largeur arborescente (treewidth). Il a été récemment prouvé, par de complexes résultats
de topologie en basse dimension, qu'il existe des n÷uds qui n'admettent pas de diagrammes
de faible largeur arborescente. Nous entamons ici une étude approfondie des décompositions
arborescentes des diagrammes de n÷uds (ou plus généralement, des diagrammes de graphes
spatiaux) en utilisant des idées de la théorie structurelle des graphes. Nous dé�nissons une
obstruction sur les plongements dans l'espace qui s'oppose à des diagrammes de faible lar-
geur arborescente. Nous prouvons de plus que cette obstruction est optimale vis-à-vis d'un
invariant de largeur que nous dé�nissons. Nous montrons ensuite l'existence d'une telle obs-
truction dès qu'il existe un plongement dans une surface avec haute représentativité. Cette
dernière partie est toujours véri�ée sur les n÷uds toriques : nous fournissons ainsi une nouvelle
preuve que ces n÷uds n'admettent aucun diagramme de faible largeur arborescente.

Pour �nir, nous nous concentrons sur la complexité des diagrammes de n÷uds sous l'action
de mouvements de Reidemeister. Reconnaître le n÷ud trivial est un problème fondamental
de théorie des n÷uds. Une façon naturelle de l'attaquer est d'appliquer des mouvements
de Reidemeister sur un diagramme du n÷ud de manière exhaustive ou aléatoire jusqu'à
ce que le diagramme corresponde à un cercle. Il s'avère que le nombre de croisements de
certains diagrammes du n÷ud trivial doit nécessairement augmenter pendant l'exécution
de cet algorithme. De plus, on ne connaît pas de borne inférieure meilleure que constante
sur le nombre de croisements qui doivent être ajoutés pendant l'exécution d'algorithmes
similaires. Cet algorithme peut aussi être appliqué au problème de décider si un entrelacs
est séparé, c'est-à-dire, s'il existe une sphère qui sépare deux de ses composantes. Il présente
le même problème qui est de devoir ajouter des croisements à un diagramme pendant son
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exécution. Nous prouvons qu'il existe des diagrammes d'entrelacs qui nécessitent un nombre
arbitrairement grand de croisements à ajouter pour être séparés en utilisant cet algorithme.

Mots clefs : Théorie des n÷uds, Topologie algorithmique, Théorie structurelle des
graphes, Diagrammes de n÷uds, Topologie géométrique
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Chapter 1

Introduction

This thesis falls within the domain of computational topology: a mathematical �eld that aims
at formalising and dealing with topological questions from a computational point of view. In
particular, we are interested in the rich connections appearing between graph theory and knot
theory. In the following, we will broadly present these domains while highlighting the links
that they o�er. Then, we will present more precisely the contributions and the organisation
of this thesis.

This �rst chapter is intended to be readable with little mathematical knowledge, although
the concepts and notions presented will be more di�cult when moving to the contributions.

1.1 General presentation

Topology. Topology can be de�ned as the branch of mathematics studying shapes. More
precisely, it focuses on properties that are preserved by continuous operations. Such prop-
erties are called topological properties. For instance, stretching, twisting, or bending are
continuous operations, while cutting or glueing are not. An example of property preserved
by such continuous operations is the ability to reach any point of a given object from any
other one; an object satisfying this property is called connected. If an object is made of
exactly two disjoint parts, no amount of bending, twisting, or expanding will make us able
to reach a point on the second part when starting from a point on the �rst part. Only when
the two parts will merge i.e., will be glued (which is not a continuous operation), one will
be able to join the two aforementioned points, and the object will be connected. Conversely,
bending, twisting, or expanding will never change the fact that an object is connected.

Historically, the birth of topology can be attributed [17, Chapter 10] to Riemann, whose
work in the 1850s led to the de�nition of topological spaces, which are the building blocks of
topological theories. However, fundamental results like Euler's formula go back to Descartes
in the 17th century (this formula will be discussed later in this section in the proof of Propo-
sition 1.1), and the key notion of continuity was already conceived by Greek philosophers
like Aristotle. It is now a very active �eld of research whose results are prevalent in many

11



12 Chapter 1. Introduction

branches of mathematics. Famously, among the Millennium Prize Problems, which are seven
renowned and highly di�cult mathematical problems selected by the Clay Mathematics In-
stitute in 2000, only one, which is of topological nature and called the Poincaré conjecture,
has been solved [106, 107, 108]. Recently, with the rise of theoretical computer science, a
need for the computation of topological properties of computer simulations appeared. This
pushed the development of computational topology as presented above and fuelled �our-
ishing exchanges of tools, methods, and problems to study between classical topology and
theoretical computer science.

As said above, topology focuses on properties preserved by continuous operations. As
such, it is natural that topology will consider two objects equivalent when they only di�er
by a continuous operation. Depending on the operation in question, the equivalence relation
will be di�erent. One of the most basic stems from homeomorphisms: a homeomorphism
is a bijective and continuous map between two spaces that has a continuous inverse func-
tion. All inherent topological properties of two homeomorphic objects are the same. For
instance, R and R∗

+ are homeomorphic via the function exp : R → R∗
+. However, there

is no homeomorphism between [0, 1] and R because they are topologically di�erent. One
topological di�erence between [0, 1] and R is the fact that everywhere in R one can move
forward and backward, but that is not the case at the endpoints of [0, 1] where only one of
these movements is possible (see Figure 1.1).

−1 0 1
(

) ∼

S1

) (. . . . . .
R

∼

(
0 1

∼
X

∼
X

∼
Homeomorphism

∼
X

No possible

homeomorphism

Figure 1.1: Two objects non homeomorphic to (−1, 1) around the illustrated points
(3 or only 1 direction for movement is possible) while S1 (a circle) and R are locally
homeomorphic to (−1, 1).

Intuitively, this notion of the number of directions of movement, or number of degrees
of freedom around a point, is what we call the dimension of an object. For now this
de�nition is �awed since it can depend on the point considered. Let us get more formal
and de�ne more precisely a common object studied in topology called n-manifold. An
object M is an n-manifold if locally it looks like the n-dimensional space Rn, i.e., for each
point of M there exists a neighbourhood homeomorphic to the open unit n-ball of Rn:
{x ∈ Rn | ∥x∥ < 1} = Bn. This last property is naturally preserved by homeomorphisms.
Hence, any object homeomorphic to an n-manifold is an n-manifold too. Thus R is a 1-
manifold while [0, 1] is not.
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Figure 1.2: Three S1, that is to say three objects homeomorphic to a circle.

We can already classify connected 1-manifolds. If, when starting from a point and keeping
a direction, one is able to reach again this starting point, then the 1-manifold is in fact
homeomorphic to a circle denoted S1, commonly described by {(x, y) ∈ R2 | x2 + y2 = 1},
and we will say that the manifold is a S1 (see Figure 1.2). Otherwise, the previous walk will
never end, and the manifold is a line i.e., it is homeomorphic to R. More generally, as it is
common for topologists, we will shorten the expression �is homeomorphic to� by �is�. Hence,
a n-sphere denoted Sn is any n-manifold homeomorphic to the unit Euclidean sphere of Rn+1:
{x ∈ Rn+1 | ∥x∥ = 1}. In particular, we choose the unit sphere as a common representative,
but any radius would be equivalent since increasing and reducing the radius are continuous
operations.

Before moving to surfaces, which are the 2-manifolds, let us introduce a second topological
property, which will be a key concept in the rest of this section: embeddability. A fundamental
topological operation is that of embedding: an embedding j : X → Y of an object X into
an object Y is a homeomorphism f from X onto its image f(X). If such a map exists,
X is said to be embeddable into Y . Since the composition of two homeomorphisms is
a homeomorphism, it follows that the notion of embeddability is a property preserved by
homeomorphisms.

Since [0, 1] can be embedded in R via the natural inclusion and R into [0, 1] via 1
2
+

1
π
arctan, we cannot distinguish [0, 1] and R via embeddability. Indeed, the objects they can

be embedded into, or the objects which can be embedded in them, are the same. However,
such a notion allows us to distinguish between the two 1-manifolds R and S1: R embeds into
S1 =

{
eiθ | θ ∈ [0, 2π)

}
1 ⊂ C via x 7→ ei arctan(x) but there is no embedding from S1 into R

since such an embedding would require two disjoint paths in R between the images of two
disjoint points of S1.

Surfaces. Moving up one dimension, we now focus on 2-manifolds, which are called sur-
faces. First, let us discuss some examples. The plane R2 and the open unit 2-ball are both
surfaces: for each point of both these objects, there is a neighbourhood homeomorphic to an
open 2-ball (take any small enough disc). As can be seen in Figure 1.3, and up to bending
a little, the same is true for in�nite tubes R × S1 and the torus T = S1 × S1, which can be
seen as the surface of a doughnut.

1Notice that this description of S1 by ϕ : [0, 2π) → S1 such that ϕ(θ) = eiθ is an example of a continuous
bijection that is not an embedding: the inverse map ϕ−1 is not continuous at ϕ(0). Indeed the limit of ϕ−1

at this point, by continuity, is 0 from one side and 2π from the other one.
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0

1

−1

1−1

T

S2

R× S1

∼ ∼

∼∼

∼ Homeomorphism

Figure 1.3: Some examples of surfaces: the surroundings of each of their points are
homeomorphic to the open unit disc depicted in the middle.

Let us emphasise again that we usually consider objects up to homeomorphism. Hence,
we do not distinguish between a cube and a 2-sphere or between an open disc and a triangle
as shown in Figure 1.4. A common description of this phenomenon is to picture every object
as if they were made of rubber.

∼=

∼= ∼= ∼=

Figure 1.4: Some surfaces homeomorphic to: the 2-sphere (top left), the open unit 2-ball
(top right), and the torus (bottom). The homeomorphism relation is denoted by ∼=.

We will now explain why, among the previous examples of surfaces, the torus is topolog-
ically more complex. This will be illustrated by the continuous transformations which can
be applied to a curve: a S1 continuously mapped to the considered surface (it need not be
an embedding). If such a curve can be contracted to a point, it is said to be contractible;
otherwise, it is non-contractible. On a 2-sphere S, every curve is contractible (see Figure 1.5).
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Indeed, if we picture them as rubber bands moving continuously on S, we can move these
curves so that they will stay on a cap of the sphere that will eventually taper to a point
(picture the equator sliding toward the north pole of the sphere of Figure 1.5).

Figure 1.5: Some non-contractible curves of the torus, a meridian in purple and a latitude
in green. The other curves, in black, can be continuously reduced to a point.

On the torus, there exist non-contractible curves, two of which can be seen in Figure 1.5,
in purple and green. From our point of view, which considers everything up to continu-
ous deformation on the surface, these non-contractible curves are non trivial: they are not
equivalent to points, while contractible curves are. Such a non-contractible curve attests to
the existence of a hole in the torus that does not exist in 2-spheres. Among the surfaces of
Figure 1.3, only the surface on the bottom right, and T, the torus, admit non-contractible
curves. It is worth noticing that the surface on the bottom right has intuitively two holes
(two distinct and disjoint non-contractible curves) while the torus has only one.

The previous examples of surfaces present another topological di�erence: some of them
are compact, like the 2-sphere and the torus, while R2, the open 2-ball B2, or the in�nite
tube S1 × R are not. These last surfaces present some kind of in�nite behaviour that the
�rst ones do not. The precise de�nition of a compact manifold would require a level of detail
exceeding the ambitions of this section. Hence, we will settle for the following: a surface is
not compact if we can �nd a sequence of points of the manifold that converges �outside� of
the manifold, like the sequence (1− 1

n
, 0)n∈N in the unit open 2-disc, which converges toward

(1, 0), �outside� of the disc. From our computational point of view, the compactness property
is especially useful. Indeed, the compact surfaces can be described by closed triangles glued
on their boundaries: they can be triangulated by a �nite number of triangles [130]. For
instance, tori are often represented by a rectangle whose opposite sides are identi�ed (see
bottom of Figure 1.6): gluing two of these sides results in a tube. The last stage is gluing its
ends to get the torus.

Compact surfaces can be input into computers, or into their abstract equivalent called
Turing machine, through the description of a �nite number of triangles and how they are
glued on their boundaries. Such a discrete representation could be surprising since topology
focuses on continuous structures and operations, which seem to be opposed to a discrete
description. However, that is not the case: these discrete representations are equivalent to
the continuous one. Thus, they encapsulate the entirety of the topological properties of
surfaces and are far more convenient to manipulate algorithmically. Hence, computational
topologists tend to prefer compact manifolds to non-compact ones.
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Figure 1.6: Representation of a 2-sphere and a torus by gluing pairs of segments on the
boundaries of triangles according to the grey links and orientations.
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Figure 1.7: Left: the real line R compacti�ed into S1, here the unit sphere of R2, by ϕ1.
Right: the plane R2 compacti�ed into S2, here the unit sphere of R3, by ϕ2.

We have seen earlier that S2 and R2 both have no non-contractible curves. In fact, they
have a very similar topology, so much so that they are the same up to one point: there is a
homeomorphism that we will denote by ϕn between each Rn and Sn ∖ {N} where N is the
�north pole� of Sn. Let us detail the construction of this homeomorphism, which is called
the stereographic projection (see Figure 1.7). We �rst put Sn on top of Rn, seen as a
hyperplane of Rn+1. Then, for each point x of Rn, we de�ne the half-line ℓx starting at
N = (0, . . . , 0, 1) and passing across x. There is exactly one intersection between ℓx and Sn,
this is ϕn(x). Notice that, intuitively, the �in�nity� of Rn is sent to N by continuity. Since
Sn is compact while Rn is not, we will say Sn is the Alexandrov compacti�cation of Rn. The
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stereographic projection allows us to reduce problems in Rn to problems in Sn, which are
manifolds we can handle more easily from a computational point of view.

Finally, the fact that every 2-manifold can be triangulated is also veri�ed by 3-manifolds
[96, 130]. In the latter case, the building blocks are not triangles but tetrahedra (the 2-
sphere, pictured on the top right of Figure 1.6, if �lled on its inside, is a tetrahedron) that
are glued on their triangular faces. It means that 3-manifolds can also be input to Turing
machines and studied by theoretical computer science. This essential property is not satis�ed
by n-manifolds when n ≥ 4, and this fact shows that low-dimensional spaces are particularly
amenable to computational questions. On the contrary, in high dimensions, many questions
cannot even be put in an algorithmic framework.

Triangulations of surfaces can actually be seen on old 3D computer graphics where tri-
angles can be outlined on the surfaces used to depict objects. Nowadays these triangles are
harder to delineate. They are small enough to create the illusion of a continuous smooth
surface. However, the underlying triangulations are what make the computations and sim-
ulations possible. In addition, in a similar way that non-contractible curves are essential to
de�ne holes in surfaces, hence being constitutive of the topological behaviour of surfaces,
surfaces within 3-manifolds are constitutive of their topological properties. Thus, the com-
putations involving 3-manifolds exploit surfaces. It goes without saying that computations
involving 3-manifolds are major since the space we live in is, on our scale, a 3-manifold: it
follows that real-world simulations need surfaces and a computational understanding thereof.

Graphs. As we explained, discrete structures are highly convenient for computational pur-
poses. It is then natural to shift our focus to graphs, which are a major part of both
mathematics and computer science. Their study is the purpose of graph theory. A graph
consists of two pieces of information: on the one hand, a set of points called vertices, and
on the other hand, the links between them, which are called edges. Edges and vertices can
both be supplemented with further information, like weights, colours, orientation, or labels.
Hence, as mathematical structures, they are highly �exible to encompass information about
objects and relations between them and have a wide range of applications as models. Any
company organisation chart, subway map, network, or dependency graph is a graph of some
sort. Graphs are often described visually by depicting vertices by points and edges by seg-
ments (see Figure 1.8 for example). In fact, we have already pictured some graphs, since
Figure 1.6 can be seen as a graph whose vertices are the segments composing the boundary
of each triangle and edges are the grey links representing their gluing.

The seminal paper of graph theory is a paper published in 1736, written by Leonhard
Euler, about the Seven Bridges of Königsberg [39]. Its goal was to settle the unsolvability of
an old mathematical challenge of the inhabitants of Königsberg. That challenge, stated as
whether a tour of the city using each bridge exactly once exists, could not be proved until
formalised within the framework of graph theory. As we want to emphasise links between
graph theory and topology, it is meaningful that this paper is also often quoted as fundamental
for the birth of topology since its concerns are of topological nature.

Since graphs are fairly understandable objects, some famous graph results are also ap-
proachable. The 4-color theorem is one of them: it states that any geographic map can be
coloured using four distinct colours in such a way that any two regions sharing a border have
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di�erent colours. This theorem, which can naturally be expressed in the framework of graph
theory, withstood attempts at proofs for more than 100 years before a computer-assisted
proof succeeded in 1969 [59]. Graph theory is currently a very active �eld of research which
presents signi�cant interactions with other �elds of mathematics and computer science, like
algebra, probability, data science, and, more importantly for us, topology.

G1 G2 G3 G4

Figure 1.8: Some examples of graphs. Among them, G1 is a tree and G4 is the complete
graph K10.

Let us now dive into some graph de�nitions and properties using the 4 graphs of Figure 1.8.
A path on a graph is a sequence of distinct vertices such that each one of them is linked
to the next one by an edge. As in topology, we say that a graph where any pair of points
can be joined with a path is connected. All graphs of Figure 1.8 are connected, except G2

where one vertex is isolated. A cycle is a path except on its endpoints, which must be the
same. When seen as a continuous space, that is to say, if edges are seen as segments that
are glued on their endpoints when they share a vertex, a cycle is a non-contractible curve
embedded on the graph. Some problems can be reduced to the search of a speci�c cycle in a
given graph: if one looks for an exciting, exhaustive tour of a country (visiting the same city
twice is boring), it amounts to looking for a cycle visiting each vertex exactly once.

Let us digress about computational complexity. We can endow the previous edges with
the corresponding length of the road they represent. In this graph, �nding a cycle of minimal
length passing through each vertex is known as a particularly hard to solve computational
problem called the Travelling Salesman Problem. Here, hard does not mean �nding a way
to compute the solution, since there exists a rather naive algorithm solving the problem:
this algorithm proceeds by enumerating all the possible orders of visit of the vertices and
remembers which one is the shorter. The running time of an algorithm is the number of
operations that is performed by the algorithm, seen as a function of the size of the entry.
The greater the number, the more time will be required to run the algorithm. Finding an
algorithm with the best possible running time and classifying problems depending on this best
possible running time is one of the major goals of computer science. For our naive algorithm,
since there are n! visiting orders where n is the number of vertices, it will take a huge amount
of time to run as each order is considered. The problem is considered hard because we do
not know, yet, of any algorithm with a time complexity better than exponential which solves
this problem in the general case.

Coming back to cycles in graphs, the graphG4, called the complete graph on 10 vertices,
contains an edge between each pair of vertices, and thus a lot of cycles. We will denote by
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Kn the complete graph on n vertices. On the contrary, graphs may also have no cycles. See
G1 for instance. A graph that is both connected and without a cycle is called a tree. In
that regard, trees have a very simple topology. Hence, they are highly interesting and useful:
similarly to spheres, they have no non-contractible curves. Another of their properties is that
there is a unique path between each pair of their vertices. For example, trees are highly used
in computer science as an e�cient data structure. One can be interested in summarising
tasks to accomplish for a process in a dependency graph: vertices are tasks to accomplish,
and edges are dependencies between them. Here, edges are oriented: if a �rst task is linked by
an oriented arrow to another one, it means the �rst task must be completed before the next
one starts. It is then crucial that no cycle appears during the creation of such a dependency
graph.

Graphs can have several edges between two vertices, like G3, or even an edge coming from
a vertex to itself, like the isolated vertex of G2: such an edge is called a self loop. Graphs
can be bipartite: their vertices can be split into two sets, such that there is no edge between
two vertices of the same set. Both G1 and G2 are bipartite, the colours of vertices describing
the aforementioned splitting. Every tree is bipartite: if we �rst �x a vertex v in the tree and
colour any other one according to the parity of the number of edges on the path between
it and v, it yields the desired partition. Notice that cycles of bipartite graphs must be of
even length. Since there are as many edges as there are vertices in cycles, and because these
vertices alternate between the two sets of the partition, there is an even number of vertices
and an even number of edges too. Finally, we can de�ne the complete bipartite graph Kn,m,
it is the bipartite graph where A has n vertices, B has m vertices, and there is an edge
between each vertex of A and each vertex of B (see Figure 1.9).

K1,3 K3,5

A

B

Figure 1.9: Two examples of bipartite complete graphs.

From a computational point of view, the structural property of being bipartite has some
algorithmic bene�ts. For example, it is easier to compute a maximum matching i.e., a
maximum sized set of edges that do not share vertices, in a bipartite graph. Similarly, many
algorithmic problems are far easier on trees, since they contain few edges and no cycles. A
fruitful idea, from a computational perspective, has been to identify graphs that look like
trees and generalise algorithms on trees to them. Hence, many measures of how close to a
tree a graph is have been developed. The treewidth is one such measure. Intuitively, elements
of a graph of treewidth k can be arranged in bags of size k+1 and presented in the shape of
a tree to form a tree decomposition. Figure 1.10 shows a tree decomposition of size 3.

Although tree decompositions must satisfy several properties, we do not want to delve
too much into technical de�nitions here. For the purpose of this introduction, it is enough
to say that the treewidth is the minimum width of a tree decomposition and to focus on the
following examples. Some graphs have high treewidth, like complete graphs or grids (see the
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Figure 1.10: Left: a graph G. Middle: a decomposition of vertices of G in bags. Right:
A tree decomposition of G.

right part of Figure 1.11): they are far from trees. Some other graphs, like trees or graphs
like the one on the left part of Figure 1.11 have low treewidth.

Figure 1.11: Left: A graph with low treewidth. Right: a graph with high treewidth.

When faced with an algorithmic problem on a graph of treewidth k, one can �rst �nd
a tree decomposition of width k. Then, one can solve the problem on each bag and try to
recompose a solution for the whole graph using the tree. This approach has proven to be
very fruitful for many computational problems.

Planar graphs. A very natural issue appears to anyone who tries to draw a graph such
that the drawing is easy to read. An obstacle to readability is crossings between edges so
that one usually tries to draw the graph with no crossings. For example, the two drawings of
Figure 1.12 represent the same graph, but the one on the right has no crossings, and therefore
is easier to read.

Hence the following de�nition: a graph is said to be planar if there exists a representation
of this graph in the plane such that no two edges cross. Here, a class of graphs is de�ned
by a topological property, namely being embeddable in the plane or, since it is equivalent, in
the 2-sphere.

This property is particularly useful for some applications when edges represent connec-
tions that must be constructed. Such examples are printed circuits, where vertices are com-
ponents and edges are circuits etched on a sheet, or more simply road design, where vertices
are cities and edges are the roads between them. In both cases, one wants to avoid cross-
ings since they are costly to handle; in our examples, they are handled by, respectively, an
electrical component or a bridge.



1.1. General presentation 21

0

1

23

4

5

6

7

8 9

10

11

0 1

2 3

4 5

6 7

8 9

10 11

Figure 1.12: Two representations of the same graph, one being planar. Two vertices are
adjacent if they di�er by only one bit when expressed in binary.

Here is a famous mathematical puzzle called �the three utilities problem�, �rst recorded
in 1913 by H. Dudeney [35] who was already calling it an old problem. The aim is to connect,
without crossings, three houses to three utilities, for example, gas, electricity, and water.

We encourage the reader who has never tried to solve this problem to try and doodle
on a sheet of paper to solve this problem, at least until some doubt about the feasibility of
the problem appears. In fact, any attempt will end up looking similar to the left part of
Figure 1.13, where all edges except one are drawn. At this point, the last edge cannot be
added between the leftmost house and the gas facility. Indeed, the �rst house is enclosed
into a circle made of 4 edges (the ones between the middle and rightmost houses and the
water and electricity facilities). Indeed, the famous Jordan [67] theorem states that any path
between a point outside of the circle (the gas facility) and a point inside (the �rst house) will
necessarily cross an edge.

Figure 1.13: On the left, an attempt to solve the three utilities problem. On the right,
the only way to solve this problem: by attaching a tunnel to the plane.

However, there is a way to solve this problem by working not on a sheet of paper but on
a mug. Once again we encourage the reader who has never tried to solve this problem on a
mug and who is not afraid to wash it afterwards to draw on it with a marker. The key is to
have the stems of the handle lying on distinct faces. That way, in a manner similar to the
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right part of Figure 1.13, where a tunnel is attached on its boundaries to two holes made
on the plane, one will be able to draw the last edge without it crossing the remaining edges.
Here, by modifying the surface on which we try to draw the graph, the problem becomes
solvable.

In topology, the formulation of this problem is: �is K3,3 embeddable on a 2-sphere?�. And
topology provides tools to answer this problem. The arguments presented above are not
really a proof, since they rely on �any attempt will end up like this�. Let us try a more formal
approach and prove Proposition 1.1.

Proposition 1.1. K3,3 is non planar: it cannot be embedded on a 2-sphere.

Proof. Assume that an embedding of K3,3 exists on the plane. We call faces the connected
components of the plane when the embedding is removed. Let us denote by V , E, and F
the number of vertices, edges, and faces of the embedding, respectively. Euler's formula [40]
(a list of proofs is available in [38]), states that, for any embedding of a connected graph in
the plane, one has V − E + F = 2. In our case, since V = 6 and E = 9, it follows from this
formula that F = 5. If, for each face f , we count the number δf of edges that bound it, each
edge is counted twice. Since any cycle in the graph will have at least 4 edges because the
graph is bipartite, we deduce then 18 = 2E =

∑
f δf ≥ 4F = 20, which is absurd. Hence,

K3,3 is non planar, and the three utilities problem has no solution in the plane.

We have here established that there exist planar graphs and non planar ones. A natural
question that follows is whether there exists a characterisation of planarity for graphs. Ku-
ratowski proved that such a characterisation exists in 1930 [77], and Wagner proved in 1937
a similar one [139]: a graph is planar if and only if one cannot ��nd� K5 or K3,3 in it (see
Figure 1.14). The ��nd� here is voluntarily unclear; in fact, there is a subtlety between its
de�nition in the two theorems. The graphs whose absence characterises the planar property
of graphs in Wagner's theorem are called forbidden minors. These theorems are highly
interesting for us since a structural property, that is to say, information about substructures
present in graphs, characterises one of their topological properties.

Figure 1.14: The two forbidden minors that characterise planar graphs: K5 and K3,3.

When a planar graph is embedded inR2, one can de�ne the dual graph of this embedding
in the following way: its vertices are the faces, and for each edge shared between two faces,
there is a dual edge between the faces, crossing it (see Figure 1.15). Such a de�nition relies
deeply on the embedding. For instance, the graph depicted in Figure 1.15 has a vertex
incident to only one edge. This vertex involves a self-loop in the dual depending on which
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face this vertex is embedded on (and to verify that the obtained graph is di�erent, one can
check the maximal number of edges incident to a face-vertex). The dual graph of a graph,
as can be seen, is planar too.

Furthermore, the property of being planar has strong algorithmic implications. The idea
is that such graphs can be cut into smaller pieces, of roughly equivalent size, in such a way
that some solutions to problems can be deduced from the solutions on the smaller pieces.
They have in fact treewidth roughly O(

√
n), where n is the number of vertices, so that the

recursive method presented earlier often provides e�cient algorithms. It follows that some
problems that can even be hard to solve in the general case admit an e�cient solution when
the input is planar. The existence of a small decomposition is in itself a strong result.

Figure 1.15: A planar embedding of a graph in R2 and a dual embedding in blue.

Let us remark that cycles of the dual graph are curves of R2 which intersect the initial
graph on its edges. If one looks for a set of edges to remove to get the graph disconnected,
it is then enough to �nd a cycle in the dual. This behaviour is a simple example of back-
and-forth that can be done between a graph and its dual. In fact, the existence of a dual for
planar graphs and the fact that this dual is embedded on R2 allow for quick computations
of the aforementioned balanced decomposition in smaller pieces. Thus, planarity and duality
have a strong impact on the computational characteristics of these graphs.

Linkless graphs Pushing further on topological properties that de�ne classes of graphs,
we will present here the class of linkless graphs. Two objects in the space are said to be
unlinked if there exists a sphere such that each of these objects lies on a di�erent side of
the sphere; they are said to be linked otherwise. For example, two circles can be unlinked
or linked (see left and right side of Figure 1.16 respectively).

Similarly to planar graphs, which are graphs which admit an embedding on a sphere,
linkless graphs are graphs that can be embedded in space i.e., R3 or S3, in such a way
that no two disjoint cycles are linked. For instance, all planar graphs are linkless graphs
since any embedding on a sphere cannot have two linked disjoint cycles (a small perturbation
of the sphere can separate the cycles). This is another class of graph that is de�ned by a
topological property, and as for planar graphs, we will see that these graphs are characterised
by structural properties.
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Figure 1.16: Left: two unlinked circles in the space, they are separated by a red sphere.
Right: two linked circles.

In the following, we will loosely show that the complete graph on 6 vertices, K6, as well
as some graphs related to it, are all not linkless. In other words, every embedding of K6 in
space will have at least a pair of disjoint cycles that are linked. In Figure 1.17, we present
an embedding of K6, denoted K, for which there is exactly one pair of disjoint cycles that
are linked. The presentation used here is what we will loosely call a projection: a drawing
from a �xed point of view in space of the embedding of the graph in space where ambiguities
about which part is above the other are removed by additional information. We present in
this �gure the only pairs of disjoint cycles that could be linked since such a pair must have
a crossing in the projection.

To proceed with our proof, we will take inspiration from [25, 125], and de�ne, for each
pair of disjoint cycles {C,C ′} in a �xed projection, δ(C,C ′): the number of crossings between
C and C ′ where C is above.

K
δ mod 2 : 1 0 0

Figure 1.17: A drawing of an embedding, K, of K6 with only one pair of cycles linked.

Proposition 1.2. The graph K6 is not linkless.

Sketch of proof: In the following we will use K to denote both the embedding described in
Figure 1.17 and its projection. Similarly, we will now consider an embedding of K6, and
denote both this embedding and its projection by K′. There are 1

2

(
6
3

)
= 10 pairs of distinct

cycles in K6. For a projection K, we will use a quantity that we will denote D(K) ≡∑
C1,C2

δ(C1, C2) mod 2 where {C1, C2} are pairs of disjoint cycles of K. Only the pairs



1.1. General presentation 25

of cycles {C1, C2} of Figure 1.17 might satisfy δ(C1, C2) mod 2. By summing on them, we
conclude that D(K) ≡ 1.

Now, let us consider a continuous transformation, a homotopy, that transforms K′ into K.
This transformation is allowed to make a pair of edges cross and edges cross themselves. Up
to small perturbations, we also assume that these crossings do not happen simultaneously,
that the projection is regular throughout the transformation (crossings on the projection
can happen between 3 edges at most, and such crossings involving 3 edges are immediately
resolved), and that edges do not cross vertices. If this last case happens, we push the crossing
edge so that it crosses edges incident to the vertex instead.

Let us study how D(K′) is modi�ed whenever two non-incident edges e, e′ cross during
this transformation; let us call this event an edge-cross. These two edges take part in two
pairs of cycles {C1, C2} , {C ′

1, C
′
2}, depending on which one of the two remaining vertices is

associated with which edge.
The edge-cross will modify δ(C1, C2) by ±1 by de�nition. Every cycle not containing e or

e′ will be una�ected by the edge-cross. Hence, D(K′) will not be modi�ed by the modi�cation
(−2 or 2 is added to the sum mod 2). It is also not modi�ed when the edge-cross happens
between two incident edges. Since D(K′) ≡ 1 ≡ D(K) at the end of the end transformation,
and D(K′) was not modi�ed by it, we conclude that at least a pair of disjoint cycles of K′

was linked at the beginning of this transformation. Hence, any embedding of K6 in space
has at least a pair of disjoint cycles that is linked: K6 is not linkless.

In [125], H. Sachs mentions transformations stemming from electrical engineering, which
he calls �star-triangle-transformation�, that preserve the property of a graph of being linkless.
This operation, pictured in Figure 1.18, and more commonly called ∆Y -transformation in
graph theory, consists in replacing a 3-clique (a triangle) in the graph by a claw K1,3 (a �Y �)
and conversely.

∆Y -transformation

Figure 1.18: The ∆Y -transformation.

The ∆Y -transformation preserves the number of edges in the initial graph. Hence there
is a limited number of graphs that can be obtained by applying ∆Y -transformations to a
graph. In the case of K6, the graphs obtained that way are called the Petersen family (see
Figure 1.19) since the famous Petersen graph is part of it (bottom graph of Figure 1.19). All
these graphs are linkless, one can check that the relevant properties of K for the proof of
Proposition 1.2 are also satis�ed by all the drawings of Figure 1.19 so that the proof can be
adapted. Indeed, there is a bijection between pairs of disjoint cycles before and after a ∆Y -
transformation. The main argument being that either the pair is disjoint from the subgraph
a�ected by the transformation, or at most one cycle of the pair uses an edge of the considered
subgraph; furthermore, if the starting subgraph is K1,3, it necessarily uses 2 edges.
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=

Figure 1.19: The Petersen family: graphs that can be obtained from K6 by ∆Y -
transformations. The 3 white vertices near each blue arrow indicate which 3-cycle is
transformed into a K1,3 graph. The Petersen graph at the bottom is also presented in
its �usual� form in lighter colours.

Remark 1.3. As said above, Figure 1.19 presents embeddings of graphs of the Petersen
family �tted for both adapting the proof of Proposition 1.2 and understanding which triangle
is transformed in a claw. However, it is not clear from this picture that choosing a di�erent
triangle for each ∆Y -transformation would yield the same graph. This is true, except for
the top left graph, where the 3-cycle induced by the 3 vertices of degree 5 yields a graph non-
homeomorphic to the one induced by the other triangles. In fact, graphs of this family present
a high number of intrinsic symmetries, which explain the symmetric role played by almost all
the triangles. A presentation of this family highlighting these symmetries can be seen here
[2].

Robertson, Seymour, and Thomas announced [113] and proved [114] that in fact, this
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family is exactly the set of forbidden minors that characterises linkless graphs. This is
another example of a class of graphs where the characterising set of forbidden minors is
known.

From a computational point of view, classes of graphs characterised by forbidden minors
are interesting. We have seen that planar graphs admit useful decompositions that allow
some problems to be solved e�ciently on them. In fact, this property is veri�ed on every
class of graphs characterised by forbidden minors [110]. Nonetheless, compared to planar
graphs, fewer problems are known to admit a signi�cant speed-up for their running time on
graphs characterised by forbidden minors. On linkless graphs, for example, the topological
properties associated with the embeddings are harder to exploit (a notable exception being
[132]).

Knot theory The last class of graphs we considered is de�ned by the topological prop-
erties of embeddings of graphs in S3 or R3. We now dive deeper into this point of view
by studying knots, which are embeddings of S1 into R3 (or equivalently S3) considered up
to some continuous deformations we call ambient isotopy (see Figure 1.20 for an example
of such embeddings). An ambient isotopy is, loosely speaking, a non-degenerate continuous
transformation which never makes the embedding cross itself.

Intuitively, if we take a rope, tie a physical knot, and consider the continuous transfor-
mations that can be applied to it, we could untie it by reversing what has been done. Hence,
we glue the extremities of the rope so that distinct knots appear: it is no more possible to
untie every such physical knot. The idea is that a knot remains the same while we play with
it: we can expand, bend, and distort the rope as long as we do not cut it to glue it back later
(this last bit is a discontinuous operation that modi�es the knot).

Knots are all homeomorphic to circles S1, and now is a proper time to emphasise that
all intrinsic topological properties of two homeomorphic objects are the same. However,
knots are embeddings on which the continuous deformations we consider are distinct from
homeomorphisms: these deformations preserve topological properties of the embeddings,
which are not intrinsic properties of a circle.

Figure 1.20: Two knots, i.e., two embeddings of S1 in R3, the knot on the left is called
the �gure-eight knot.

Similarly to graphs, which can model an incredibly high range of both physical and
abstract objects, knots are the natural model to consider when it comes to understanding
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Figure 1.21: A polygonal embedding of the �gure-eight knot.

and studying any object of the real world that �looks like� a 1-manifold. Thus, knot theory
�nds application in many �elds of science. For example, DNA can be studied through that
lens since it consists of a double helix of nucleotides that get knotted by the action of enzymes
[111, 63] whose folding can also be studied by knot theory [64]. In physics, �eld lines can
be seen as knots, and quantum �eld theory turns out to bene�t from understanding knots
[68]. The list could go on with 3D printing, chemistry, or material design. Going back to our
more theoretical focus, understanding knots is a �rst step toward understanding embeddings
of objects in higher dimensions, which is a basis of many other problems.

However, the study of knots is not easy. From their very de�nition comes the fundamental
question of knot theory: are two knots the same? In other words, given two embeddings of
S1, does an ambient isotopy from one to the other exist? This question would immediately
appear highly di�cult to someone tasked to decide whether two given balls of wool represent
the same knot (assuming the ends are glued together). Indeed, one would need to manipulate
the threads long enough to have both physical knots match. And that would only work if they
represent indeed the same knot. Indeed, if they do not, how can one be sure that a longer
manipulation would not eventually make both knots match? Finding an ambient isotopy
between two knots is mathematically challenging. In fact, it is also hard for computers.
Furthermore, that last assertion raises a concern: how does one input a knot to a Turing
machine or a computer?

Similarly to surfaces that can be encoded by a �nite number of triangles, knots can be
equivalent to a �nite representation: a �nite closed broken line in space. For example, the
�gure-eight knot of Figure 1.20 can be transformed into the broken line of Figure 1.21. Such
an embedding is called a polygonal embedding. It is a common restriction in knot theory
to study only knots admitting a polygonal embedding: we will do so in the following.

Polygonal embeddings are a convenient representation of knots, and in fact, knots admit-
ting such embeddings also admit diagrams. Intuitively, diagrams are unambiguous drawings
of knots in the plane. The drawing is obtained by a regular projection (such a projection
can be seen in Figure 1.22), which is a projection where points with multiple preimages are
in a �nite number and come from crossing strands. The unambiguity comes from added
information of which strand is above the other one, usually pictured by a blank space of
the lower strand around each crossing (as can be seen at the bottom of Figure 1.22, and
was already used in Figure 1.17 to picture embeddings in space). A diagram can be seen
as a planar embedded graph such that each vertex has 4 incident edges (vertices come from
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crossing strands in the projection); such a graph is called 4-regular (for instance, the graph
G3 of Figure 1.8 is 3-regular).

Diagram

Figure 1.22: A regular projection of the �gure-eight knot on the blue plane and a non-
regular one on the red plane: two points of the projection have more than 2 preimages.
Bottom right: the diagram arising from the regular projection.

Reidemeister proved in 1927 [138] the eponymous theorem: two knots, represented by two
diagrams, are ambient isotopic if and only if a sequence of Reidemeister moves can turn
one of the diagrams (seen as an embedded planar graph) into the other. The Reidemeister
moves are local modi�cations of the strands that are pictured in Figure 1.23. Intuitively, RI
twists or untwists a strand, RII creates or removes an overlap between two strands, and RIII
represents the fact that a strand can move back and forth over another crossing.

RI RII RIII

Figure 1.23: The three Reidemeister moves.

This theorem is really powerful since it connects the 3D nature of knots with their possible
diagrams that are planar graphs. It also opens directions on how to solve the initial question
of identifying whether two knots are the same: one can provide a sequence of Reidemeister
moves to apply that certi�es the equivalence between the two knots. In that description,
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all that remains is �nding such a sequence. It is, in fact, a troublesome question. There
is no simple way to do so. Intuitively one is tied to trying out every possible move and
hoping for the diagrams to eventually match. However, this search makes sense only if we
limit the possible moves, otherwise, it is always possible to have more and more crossings
via the repetition of RI or RII moves, eventually yielding a very complex diagram. The
natural approach is then to try to only decrease the complexity of the diagram, corresponding
intuitively to its number of vertices. However, it is known that some diagrams will require
�rst increasing their complexity before they can be reduced [21]. This behaviour illustrates
how hard this problem can be. Currently, the best known algorithms to detect whether two
knots are the same do not use Reidemeister moves and instead exploit the topology of the
�outside� of the knot. However, the running time of these algorithms is incredibly long. To
echo our previous parts, let us emphasise that these algorithms use surfaces to carry this
study.

Hence knot theorists tend to search for ways of distinguishing knots: ways to certify
that two knots are di�erent. And that is done by studying knot invariants. Invariants are
quantities, or objects, that remain the same for every possible presentation of a knot. Thus
if two embeddings do not share an invariant, we know they are di�erent. The converse is
not true in general; two knots sharing an invariant can be di�erent. The invariance of some
quantities can be clearly derived from their de�nition. The crossing number is one of them:
it is the minimum number of crossings a knot diagram can have. Since it does not depend
on a �xed embedding but on the equivalence class as a whole, it is clear that this quantity
is an invariant. Some other invariants are de�ned by a calculation or property of a �xed
embedding or diagram, therefore, proving invariance requires proving that the calculation
yields the same result for every embedding or diagram.

Let us develop one simple example: tricolorability. A strand of a diagram is a continuous
arc of a diagram when drawn using the convention that the lower part of the knot is replaced
by a blank at each crossing as in Figures 1.23 and 1.22 (in this one, the �gure-eight knot has
4 strands). A knot is said to be tricolorable if one of its diagrams is 3-colorable, i.e., if it is
possible to colour, using three colours, the strands of a diagram such that each crossing has
either all 3 colours incident to it or only 1 (the three colours must also be used at least once).
The Reidemeister theorem shows that every pair of diagrams of the same knot are connected
by a sequence of Reidemeister moves. Thus, it is enough to show that if one diagram is
3-colorable, then every diagram of the sequence, including the last one, is 3-colorable too.
By contradiction, it is clear that if a knot diagram is not 3-colorable, none of its diagrams
will be 3-colorable.

Proposition 1.4. Tricolorability is a knot invariant.

Proof. Let us proceed with the proof outlined above and consider an initial 3-colouring of
a knot diagram and a Reidemeister move. We will only modify the colour of the strands
created by the Reidemeister move so that the properties of a 3-colouring will still be satis�ed
at uninvolved crossings. In particular, the colours of the strands stretching outside of each
Reidemeister move pattern will be the same. In fact, the proof can be summed up by
Figure 1.23 when only one colour is involved and Figure 1.24 otherwise.
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�If the move is RI, a strand is separated in two, or two are merged. In both cases, they
need to have the same colour (see the leftmost part of Figure 1.23 where the colour is black,
by symmetry).

�If the move is RII, let us assume that more than one colour is involved in the move
(otherwise there is nothing to say). Then the picture is, up to switching colours, the top left
of Figure 1.24. If some crossings are involved, they satisfy the property of a 3-coloring.

�If the move is RIII, let us assume again that more than one colour is involved in the
move (otherwise there is nothing to say). We will refer to the relevant part of Figure 1.24.
Set �rst the colour of the over strand (say green in our case); it will remain the same during
the move. The middle part of the knot is made of two strands that have either one or two
colours (top right and bottom case, respectively). The former case is straightforward, so let
us focus on the latter. Either the crossing not involving the upper strand has only one colour,
in which case it is bottom left, or it has 3 and the case is bottom right. In all these cases a
3-colouring is preserved.

RII

RIII

RIII

RIII

Figure 1.24: Maintaining a 3-colouring through Reidemeister moves.

As we have seen, the invariance of tricolorability admits a rather elementary and accessible
proof. Let us use it in Figure 1.25 where the three simplest knots are pictured: from left to
right, the unknot (the standard embedding of the circle), the trefoil knot (only knot with
crossing number 3), and the �gure-eight knot (only knot with crossing number 4). Among
them, the trefoil knot can be distinguished from both the unknot and the �gure-eight knot
using this invariant, since the diagram of the unknot has only one colour: it is not 3-colorable.
Similarly, pairs of strands of the �gure-eight knot in the provided diagram have two crossings
in common. Since there are 4 strands, at least two of them will have the same colour, and a
contradiction is obtained at one of their common crossings since the remaining strand needs
to be of a di�erent colour. As said above, Proposition 1.4 and Figure 1.25 prove that the
trefoil knot is di�erent from the unknot and the �gure-eight knot, but this invariant is not
enough to distinguish these two last knots.

Going back to a computational point of view, knot diagrams are planar graphs. Hence,
it is a natural idea to try to apply the results and methods of graph theory to understand
knots via their diagrams. For instance, some knot invariants which are hard to compute in
the general case can be computed e�ciently when one of their diagrams looks like tree.
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Figure 1.25: Three knot diagrams. Among them, only the trefoil knot in the middle, is
tricolorable.

We presented earlier a method to handle algorithmic problems on graphs using tree de-
compositions. Let us sketch an algorithm to decide the tricolorability of a knot of low
treewidth. Naively, if the diagram has n crossings, it will possess n strands, which can there-
fore be coloured in 3n ways. Checking the validity of each colouring leads to an exponential
algorithm. Then, let us assume that the diagram has treewidth k to do better. A property of
planar graphs is that it is possible to �nd a tree decomposition where bags are bounded by
circles in the plane (such a decomposition is shown in Figure 1.10). Then one can enumerate
at most 3k colourings for the strands of each bag and check the compatibility with the colour-
ing of the neighbouring bags of the tree along the circles of the decomposition. This broadly
sketched algorithm is polynomial when k is �xed, as opposed to the exponential naive one.2

Theme of this thesis. Earlier, we showed how topological properties of graphs de�ne
interesting classes of graphs. We also described how the topological properties of planarity
and linklessness on graphs are characterised by substructures in graphs. These properties and
their consequences are part of a sub�eld of graph theory called structural graph theory.
We then emphasised how graphs can enlighten our understanding of knot theory. This thesis
is about this last part: drawing inspiration from results and methods of structural graph
theory in order to develop our understanding of knot theory.

Let us broadly present some of our main results. As we have illustrated just above with
tricolorability, when a knot admits a diagram of low treewidth, this tree-like structure can be
leveraged to provide e�cient algorithms to compute invariants. However, every knot admits
diagrams with high treewidth since it is always possible to manipulate some part of the knot
to have it appearing like a grid as in Figure 1.26.

Therefore, a natural question, asked by Burton [22], Makowski, and Mariño [86], is
whether there exist knots that do not admit diagrams with low treewidth. In other words,
they asked whether there exist knots for which algorithms exploiting low treewidth cannot
be used. This question was answered positively in 2018 [28] using complex results [57] on
the shape of a decomposition of the space by surfaces. We develop a more elementary theory
reproving this result that is inspired by techniques associated with treewidth, hence com-
ing from structural graph theory. More precisely, we de�ne a measure of how close to a

2In fact, deciding tricolorability can always be done in polynomial time by computing the value of the
Alexander polynomial at −1 [100]. However, tricolorability can be generalised to colouring invariants whose
computation is provably impossible in polynomial time (modulo standard conjectures) [76].
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∼=

Figure 1.26: A diagram of the unknot with high treewidth.

tree a knot is (this is also a knot invariant) and an obstruction to it. The invariant, called
spherewidth, is what links the knot to the treewidth of its diagram: if the spherewidth is high,
the treewidth of any diagram is high. The spherewidth informally quanti�es the best way to
sweep the space with spheres nested in a tree-like fashion while minimising their number of
intersections with the knot. The obstruction, on the other hand, provides a lower bound for
the spherewidth.

In addition, we prove that our obstruction exists whenever knots can be embedded on a
surface. To do so we exploit the interactions between the spheres of our sweepouts and this
surface, and especially the topology arising from these intersections. This allows us to prove
that all diagrams of a certain family of knots have high treewidth. Such a family is called
the family of torus knots (a knot can be seen on Figure 1.27). Furthermore, our results apply
as well to links and spatial graphs. Both are generalisations of knots. Links are a disjoint
union of knots, each of those knots is called a link component. For example, the right part
of Figure 1.16 pictures a link called the Hopf link, which contains two link components, each
one being an unknot. Spatial graphs are embeddings of graphs in S3. These embeddings can
be seen as a generalisation of knots and links: they locally look like knots except at vertices
where they can branch o�. It follows that their study is at least as complex as that of knots
and links.

Our obstruction can also be used to address another problem that might in appearance
seem unrelated. We expressed before how one might need to �rst increase the number
of crossings before expecting progress on the process of untangling an unknot diagram by
Reidemeister moves. In fact, that behaviour can appear on any problem dealt with by
the iterated application of Reidemeister moves. However, no result is known on how many
crossings need to be added while solving a problem that way. Another one of our contributions
is to leverage our obstruction to provide examples of diagrams requiring an arbitrarily large
number of added crossings to be simpli�ed.
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Figure 1.27: An example of a torus knot.

1.2 Contributions of this thesis

While we intended the previous section to be approachable with little knowledge in topology
and graph theory, the same is not true for the following. We refer to the textbooks of
Schultens on 3-manifolds [130] (it also covers basics about surfaces), Diestel on graph theory
[30], Rolfsen [120] for knot theory, and Cormen, Leiserson, Rivest, and Stein for basics on
algorithms [26].

We now move on to a more precise description of the contributions of this thesis without
diving too deep into their speci�cs. Every object de�ned here will be rede�ned properly in
the relevant chapter. Our work makes contributions to knot theory using various notions
of tree-like decompositions relying on surfaces and how these surfaces interact with knots.
Furthermore, inspiration and methods used in our results stem from structural graph theory.

Decidability of the genus defect on Hopf arborescent links. As explained in the
previous section, the problem of deciding whether two knots are equivalent is hard, both
from a theoretical and computational point of view. Hence, knot theory resorted to the use
of invariants. Among them, a classical one is the knot genus. It is the minimal possible
genus among its Seifert surfaces i.e., oriented surfaces embedded in S3 having the knot as
their boundary. For example, the unknot is the only knot with genus 0, that is to say that
the unknot is the boundary of an embedded disc (this property is a common de�nition for the
unknot). Several algorithms to compute the genus of a knot are known, and the complexity
of its computation is fairly understood: we know that the problem is both in NP and in
co-NP [4, 82].

Seeing S3 as the boundary of B4, we consider a generalisation of knot genus that we will
call 4-genus : loosely speaking, it is the minimal genus of an oriented surface embedded in
B4 that has the knot, embedded in ∂B4, as its boundary. In the context of 4-dimensional
topology, smooth and topologically �at embeddings are di�erent. This gives naturally rise
to two di�erent notions of 4-genus: we refer to Chapter 3 for precise de�nitions. Since our
methods and results apply equally well to both, we will continue to speak of 4-genus in the
remaining of this introduction.

From a computational point of view, topology in dimension 4 is hard and not well under-
stood. On the one hand, many fundamental topological problems, like deciding homeomor-
phisms between manifolds, are known to be undecidable in dimension 4 [89]. On the other
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hand, the decidability of many fundamental problems, such as recognising the 4-dimensional
sphere, is wide open, and no general framework is known for tackling these questions. The
4-genus is part of these problems whose decidability is not known in the general case. This
invariant is essential to the study of slice knots i.e., knots of 4-genus 0, and to major knot
theory conjectures like the slice-ribbon conjecture [41].

We investigate a class of knots and links (which are unions of knots) that we call Hopf
arborescent links. They are knots and links that can be decomposed into a tree-like plumbing
of Hopf bands, where a Hopf band is an embedding of an annulus that has a Hopf link as
a boundary (see left of Figure 1.28, and right for such a decomposition). The defect is the
di�erence between the genus and the 4-genus. We prove Theorem A which states that, for
all k, there exists an algorithm to decide if a Hopf arborescent link has defect at most k.
Hence, we settle the decidability of computing the defects on this class of knots and links.

∼=

Figure 1.28: Left: a Hopf band. Right: a plumbing of two Hopf bands yielding a �gure-
eight knot.

To prove this theorem, we draw inspiration from structural graph theory by de�ning a
minor relation, called link-minor, on this class of links and proving that it is a well-quasi-
order. If a set is ordered by a well-quasi-order, every in�nite sequence of this set will
contain at least two comparable elements. This implies that no in�nite antichain exists in
the set, no in�nite sequence of pairwise non comparable elements. Hence any set de�ned
by a property stable for the well-quasi-order can be characterised by the �nite antichain of
minimum elements of its complement. This yields an algorithm for verifying the property
on an element x when the relation can be decided: it is enough to decide that no minimum
element is in relation with x.

Our proof technique follows this strategy and works by showing that the defect is stable for
the link-minor relation and providing an algorithm to decide this relation. The link-minor
relation relies on a precise de�nition of Hopf plumbings seen as a construction operation
carried out on trees. From this de�nition, we can associate a tree and a speci�c Seifert
surface to each Hopf arborescent link. First, we leverage the Kruskal tree Theorem [73] on
these trees to prove that the link-minor is a well-quasi-order. Then, we provide an algorithm
to decide the link-minor relation. Next, we prove the stability of the defect by link-minor by
studying a second relation, called surface-minor, which is weaker than our link-minor relation
but behaves well with respect to the defect.
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The surface-minor is a containment relation between the speci�c Seifert surfaces associ-
ated with our links. Furthermore, since the link-minor is a well-quasi-order that is �ner than
the surface-minor, our proof techniques also yield Theorem B which states that the surface
minor relation is a well-quasi-order on the Seifert surfaces associated to our links.

� We introduce a class of knots and links called Hopf arborescent links, which are
obtained by iterated plumbings of Hopf bands.

� We prove the decidability of the defect on the class of Hopf arborescent links.
See Theorem A.

� We prove that the surface-minor relation is a well-quasi-order on the class of Hopf
arborescent links. See Theorem B.

Width invariant of links and spatial graphs from a structural graph theory ap-
proach. We develop further the context and concepts discussed in the last part of the
previous section. The search for knot invariants that can be computed e�ciently is a way
to circumvent the di�culty of knot recognition. Another successful method to tackle hard
problems is to develop algorithms, called Fixed-Parameter-Tractable (FPT [27]), whose de-
sign depends on additional information of the input: the parameter. Their main interest is
that the complexity of these algorithms is small when the parameter is �xed. The treewidth
is a primary parameter in that regard: algorithmic designs on graphs bene�t greatly from
the underlying tree-like structure of graphs of small treewidth (see for reference this survey
of Bodlaender [14]). Applying this method to knot diagrams with low treewidth leads to the
e�cient computation of many knot invariants (see e.g. [86, 19, 87]), that are otherwise known
to be hard to compute. As explained earlier, this situation led to the question [22, 86] of
whether there exists a family of knots for which all diagrams have high treewidth, which was
later answered positively [28]. Our work focuses on reproving and generalising this answer
using inspiration from structural graph theory.

The treewidth is also a concept at the heart of the proof of the graph minor theorem from
Robertson and Seymour [118]. This parameter led to the birth of many other related width
invariants which can present both theoretically and practically relevant features for solving
problems. One of them is the branchwidth, which is equivalent to treewidth up to a constant
factor. Treewidth and branchwidth are both de�ned as min max of a measure taken over a
set of decompositions. By essence, they are troublesome to lower bound since, in order to
do so, one must prove that every decomposition has high width. Branchwidth is particularly
interesting for us since it can be interpreted geometrically as tree-like sweepouts by circles
of a sphere on which a planar graph is embedded (recall that the knot diagrams are planar
graphs) [124]. Furthermore, it admits a tight obstruction, called a tangle, which presents
topological aspects and whose existence grants a lower bound on branchwidth. To be more
precise, a tangle has an order which represents its size, and a graph has a tangle of order k
if and only if the branchwidth is larger than k. Hence providing an obstruction of size k also
ensures that k is a lower bound of the branchwidth. These two facts led us to design our
width invariant of knots, called spherewidth, inspired by branchwidth. It relies on sphere
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decomposition of S3 which can be seen as a generalisation in S3 that uses spheres of the
aforementioned sweepouts. Formally, a sphere decomposition is a continuous map S3 → T
where T is a trivalent tree such that the preimage of each leaf is a point, the preimages of
each point in each edge is a 2-sphere, and the preimages of each inner vertex form a double
bubble. A double bubble is made of two spheres which intersect on a disc and represents
intuitively the moment at which two spheres merge (see Figure 1.29 for a double bubble
and a 2D representation of a sphere decomposition). The width of the decomposition is the
maximal number of intersections between a sphere and the knot (one can complete the sphere
decomposition pictured in Figure 1.29 so that it has width 4). Then, the spherewidth is the
in�mum of the width among all sphere decompositions.

Sphere

decomposition

Figure 1.29: Left: a double bubble. Right: an example of a sphere decomposition where
preimages of inner vertices are presented in red, and preimages of a point inside an edge
are presented in grey.

Since sweepouts of knot diagrams by circles can be �lifted� to sphere decompositions,
it follows that the spherewidth is a lower bound to the branchwidth of diagrams, which is
itself a lower bound for the treewidth of diagrams. Similarly to graph theory, we design an
obstruction, called bubble tangle, mimicking the one de�ned on graphs and providing lower
bounds on spherewidth. We prove via Theorem C that this obstruction is also tight: for all
k, either there exists a sphere decomposition of width k or a bubble tangle of order k, where
the order also represents the size of our obstruction.

Furthermore, as a major feature of our approach, we provide tools to obtain such an
obstruction. Theorem D states that a bubble tangle of order Ω(r) exists whenever the knot is
embedded on a surface with compression-representativity r. The compression-representativity
quanti�es how well the knot represents the surface on which it is embedded. For example,
the torus knot Tp,q, when embedded on the standard torus associated to its de�nition, has
compression-representativity min(p, q). Intuitively, our obstruction designates a small side
for every sphere with a small number of intersections with the knot (this is again inspired by
the obstruction on graphs). When the knot is embedded on a surface with non zero genus,
spheres with a small number of intersections with the knot will cut discs from the torus on
one side, while the other will contain the topology of the torus. The small side is then the
one that contains only the discs (see, for example, Figure 1.30).

Hence, our work reproves, using new techniques inspired by structural graph theory, the
fact that any diagram of a torus knot Tp,q has treewidth Ω(min(p, q)). On a more general
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Figure 1.30: Intersection of small size between a torus knot T5,6 embedded on a torus
and a sphere. It follows that the topology of the torus lies on one side, while the other
contains only discs of the torus. The latter is the small side.

level, we devise a systematic way to handle such questions by the study of surfaces on which
we can embed knots, links, and, more generally, spatial graphs.

� We de�ne spherewidth: a width measure of knots, and more generally spatial
graphs inspired by structural graph theory. We show that it is a lower bound to
the treewidth of any diagram.

� We de�ne bubble tangles: an obstruction to spherewidth inspired by structural
graph theory.

� We prove Theorem C stating that our bubble tangles are a tight obstruction to
the spherewidth.

� We prove Theorem D stating that bubble tangles with size Ω(k) exist whenever
there exists a surface on which a knot, link, or spatial graph is embedded with
compression-representativity k.

� We reprove, using elementary techniques stemming from structural graph theory,
the result of [28] stating the existence of knots for which all diagrams have high
treewidth.

A superconstant lower bound on the complexity of splitting link diagrams. As
we explained in the previous section, Reidemeister moves are a powerful method to study
knots and links via their diagrams, thanks to the Reidemeister theorem. They appear as a
very convenient and natural tool to study basic considerations on knots, like their crossing
numbers or unknotting numbers. A primary example of a knot theory problem is recognising
the trivial knot, which is the �rst instance of the major problem of knot theory: deciding
whether two knots are equivalent or not. To do so, a natural strategy is to try to untangle a
given knot by applying Reidemeister moves on its diagram in a brute force or random manner
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until the diagram corresponds to a simple curve. However, some unknot diagrams [21], called
hard unknots, exhibit an annoying behaviour for this algorithm: the maximum number of
crossings of a diagram during the algorithm is larger than the initial one. We �rst need to
add crossings before being able to reach the untangled diagram.

Formally, let us denote by cr(D) the number of crossings in the diagram D. Then, for two
equivalent diagrams D1, D2 and a sequence of Reidemeister moves R transforming D1 into
D2, we de�ne Top(D1, R) which is the maximum of cr(Di)−cr(D1) throughout the sequence
of Reidemeister moves where Di is the diagram D1 after performing the �rst i moves of
the sequence. The quantity we are interested in is Add(D1, D2) which is the minimum of
Top(D1, R) taken among all the sequences of Reidemeister moves that transform D1 into D2.
When we see D2 as a goal diagram, Add(D1, D2) is a lower bound on the number of crossings
to add during the running of the aforementioned algorithm that applies Reidemeister moves
on D1 to reach D2.

Studying Add(D1, D2) turns out to be trickier than one might initially think. Apart from
an exhaustive search of the possible Reidemeister moves, which quickly becomes intractable,
no method is known to lower bound this quantity. In the context where D1 is an unknot
diagram and D2 a diagram of a simple curve, D1 is a hard unknot if Add(D1, D2) is positive.
In fact, only diagrams on which Add(D1, D2) ≤ 2 are known [21] although it is conjectured
that there exist unknot diagrams D for which Add(D,D2) is arbitrarily large.

We will focus on this quantity in the splitting problem: deciding if a link L is split i.e.,
is there a sphere disjoint from L separating at least 2 link components of L? If such a sphere
exists, there exists a link diagram in which two unlinked sublinks are disjoint: they are
separated by a circle in the plane. Therefore, in terms of Reidemeister moves, we will study
Add(D1, D2) where D2 is a link diagram of a link L where a circle separating the link diagram
can be drawn in the plane, andD1 is any diagram of L. We will call a link diagramD1 of a link
L for which Add(D1, D2) > 0 a hard split link. Finding a sphere in space separating two
links is easier than the problem of �nding a disc that has a knot as its boundary. Therefore,
this problem, which is interesting in itself, has been studied several times as a useful and
easier problem for understanding the unknot recognition problem [36, 78].

We exhibit a family of link diagrams D(p, q) with two unlinked sublinks: the �rst sublink
is made of two tangled torus knots, and the second one is an unknot surrounding one of
the torus knots (see D(7, 13) in Figure 1.31 for an example). For D′(p, q), any link diagram
on which U is disjoint from the other link components, we prove Theorem E, implying that
Add(D(p, q),D′(p, q)) = Ω(min(p, q)). If we call crossing-complexity of D1 the minimum
of Add(D1, D2) > 0 among all split link diagrams D2 of L, we provide hard split links of
arbitrarily large crossing-complexity. More precisely, Theorem E states that for each n, there
exists a diagram Dn of a split link Ln of S3 with 3 components such that any sequence of
Reidemeister moves converting it to a split diagram of Ln passes through a diagram with at
least 2n2 + 2

3
n crossings.

The method used here is to exploit the unknot U present in every one of our diagrams and
which is separated in S3 from the remaining link components (see the blue link component of
Figure 1.31). Our approach is to show that if there exists a sequence of Reidemeister moves
where Add(D(p, q),D′(p, q)) stays small, we can use the evolution of U throughout these
moves to de�ne a sweepout of the two linked torus knots with spheres, where each sphere has
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U

Figure 1.31: The link diagram D(7, 13): two linked T7,13 and an unknot U .

a small number of intersections with that link. But our obstruction from Chapter 4 has been
exactly designed to show that such a sweepout is impossible. Hence Add(D(p, q),D′(p, q))
must be large enough.

� We de�ne several families of link diagrams on which the number of crossings to
add to be able to separate the links is arbitrarily large, as stated by Theorem E.

� We outline a method to provide lower bounds on the minimal number of crossings
to add during the execution of algorithms relying on trying Reidemeister moves.

1.3 Organisation

In Chapter 2, we go through global preliminaries for our work. In particular, we de�ne
properly most of the concepts that were only loosely de�ned in this introduction.

Chapter 3 focuses on Hopf arborescent links and the decidability of the defect. We present
there Theorems A and B from our article [B], written with Pierre Dehornoy and Arnaud
de Mesmay, which appeared in the Proceedings of the 40th International Symposium on
Computational Geometry and has been invited to a Discrete & Computational Geometry
special issue of the Symposium on Computational Geometry 2024.

Chapter 4 concentrates on tree-like sweepouts of S3 and their obstruction. Our dual-
ity theorem, Theorem C, and existence theorem, Theorem D, are introduced and proved
there. This chapter is mostly coming from our article [A], written with Arnaud de Mesmay,
which appeared in the Proceedings of the 39th International Symposium on Computational
Geometry.
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Chapter 5 is the fruit of a project led with Arnaud de Mesmay and Jonathan Spreer. In
it, we leverage the obstruction developed in Chapter 4 to prove our Theorem E.

Finally, Chapter 6 presents the remaining main conjectures and lines of research arising
from our work.

In addition, Chapter 7 is a French translation of Chapter 1.





Chapter 2

Preliminaries

2.1 Topological background

In the following we will go through a brief introduction of the majority of common topo-
logical de�nitions and notions we will use in this thesis. Getting used to these objects or
developing insights about them would require a deeper exposition. We refer again to the
book of Schultens [130] for further presentations of the following notions, as well as the most
fundamental objects of topology that the reader might not be familiar with.

2.1.1 Basic de�nitions and assumptions

Piecewise-linear setting. Following standard practice of low-dimensional topology, we
will work in the Piecewise-Linear (PL) category [121]. It means that almost all the objects
that we use in this thesis are assumed to be piecewise-linear, i.e., made of a �nite number
of linear pieces with respect to a triangulation of S3. This last statement will be discussed
further within Chapter 3 since we will be led to consider smooth surfaces in B4 which are
more restrictive than the PL ones.

Hence, in the following, we compactify R3 and work within S3 which is assumed to be
triangulated (recall that such a compacti�cation is presented in Chapter 1 illustrated by
Figure 1.7). Furthermore, all embeddings will be PL: a knot will be a PL embedding of S1

into S3, a link is a disjoint union of knots, and a spatial graph is a PL embedding of a
graph G into S3. A diagram is a PL embedding of a decorated planar graph in the sphere
that is obtained from one of the previous objects by a regular projection (we will come back
to this point in Section 2.1.3).

More on manifolds. A natural extension to the n-manifolds presented in Chapter 2 are
n-manifolds with boundary which are spaces everywhere locally homeomorphic to Rn

or the closed half space [0,+∞[×Rn−1 (see Figure 2.1 for instance). The set of points of
an n-manifold with boundary M whose neighbourhood is homeomorphic to the closed half

43
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space forms the boundary of M and will be denoted by ∂M . It is worth noticing that
the boundary of an n-manifold with boundary naturally inherits from it a structure of an
n− 1-manifold. For example, the boundary of the closed ball Bn+1 is the n-sphere Sn.

Figure 2.1: A neighbourhood of a point on the boundary of manifolds with boundary.

A subspace A of a connected space X is said to be separating if X ∖A is disconnected.
Furthermore, such a space A is said to separate two subsets of X if the two aforementioned
subsets lie in distinct connected components of X ∖ A.

Formal de�nition of some continuous operations and objects. If X is a topological
space, a curve of X is a continuous map S1 → X, while an arc of X is a continuous map
[0, 1] → X. Each of these objects is said to be simple if it is an embedding: it never crosses
itself.

A homotopy h between two continuous functions f : X → Y and g : X → Y is a
continuous map X × [0, 1] → Y such that h(·, 0) = f(·) and h(·, 1) = g(·). Two functions
are said to be homotopic if there exists a homotopy between them. In this thesis, many
objects that we manipulate are intrinsically de�ned as continuous maps: they are said to be
homotopic if there exists a homotopy between these maps. Among them are �gure knots,
that are embeddings of S1 into S3 or R3; and curves on surfaces that are continuous maps
of S1 into the aforementioned surface. A usual way to picture a homotopy is to see it as a
continuous transformation when the second parameter in [0, 1] is seen as the time (see for
instance the homotopies of Figure 2.2).

Figure 2.2: Three visualisations of homotopies, one on an arc (left), and one on a curve
(middle) which is turned into a point, and an annulus (right) which retracts onto one of
its boundaries.

A map is said to be contractible if it is homotopic to a constant function. For example,
all curves on the sphere or the plane are contractible: they are all homotopic to a constant
function whose image is a single point (see the middle of Figure 2.2). If this point is part of
X, a homotopy contracting a map to a point is a special case of what is called a retraction.
A retraction h from X to A ⊂ X is a homotopy h from X to X such that h(·, 1) ⊂ A and
h(A, 1) = A. When such a retraction exists, we say that X retracts onto A (see right of
Figure 2.2).
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While homotopies allow the objects to self-intersect, their strengthening, called isotopies,
does not. An isotopy ϕ between two continuous maps f : X → Y and g : X → Y is a
homotopy between f and g such that ϕ(·, t) is an embedding for all t ∈ [0, 1]. In this case,
f and g are said to be isotopic. In particular, it follows directly from these de�nitions that
every curve isotopic to a simple curve is also simple.

Finally, we want to de�ne homotopies and isotopies relative to a subspace, which are
operations that keep elements of the subspace within it. Formally, for A a subspace of X and
f, g two continuous maps, X → Y , h is a homotopy relative to A (resp. isotopy relative
to A) if it is a homotopy (resp. an isotopy) such that: ∀a ∈ A, h(a, ·) = f(a) = g(a). This
notion can be used to consider arcs on a surface with boundary Σ whose endpoints lie in ∂Σ.
All such arcs are contractible by de�nition; however, di�erent classes of arcs up to homotopy
relative to the boundary can appear.

2.1.2 Surfaces

Orientability and compactness. Recall from Chapter 1 that surfaces are 2-manifolds.
All surfaces shown in the previous chapter were orientable. It means that it is possible to
de�ne a consistent notion of right and left direction. That is not the case on the Möbius
band, which is the surface obtained by glueing two opposite sides of a rectangle in the
opposite direction as illustrated by Figure 2.3. Indeed, after going once through the red
curve of the right side of the same �gure, the point and arrows depicted will end up in the
same place but with the arrows swapped. A surface is said to be orientable if it does not
contain a sub-surface homeomorphic to a Möbius band. In this thesis, every surface that we
consider will be orientable. Furthermore, all the surfaces will be compact, except the plane.

Figure 2.3: A Möbius band.

Genus. We have seen in Chapter 1 that some curves on surfaces may be non-contractible
and can be interpreted as the existence of a hole in the surface. We call the genus of the
surface the maximal number of disjoint simple closed curves that can be removed from a
surface without rendering it disconnected (see Figure 2.4). That de�nition also holds for
surfaces with boundaries. For example, 2-spheres, discs, and annuli have genus 0 while the
torus has genus 1.

We will say that a surface with a boundary has b ≥ 0 boundaries if its boundary is made of
b connected components. The genus is a powerful surface invariant since compact connected
surfaces with boundaries are characterised by their genus and number of boundaries as stated
by Theorem 2.1.
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Figure 2.4: The orientable compact surfaces with genus less than 3. The maximal
number of disjoint curves along which one can cut without disconnecting the surfaces is
shown.

Theorem 2.1 (Classi�cation of surfaces). Set g ≥ 0 and b ≥ 0, all compact connected
orientable surfaces with b boundaries and genus g are homeomorphic.1

Furthermore, the genus can easily be computed when the surface with boundary is tri-
angulated. Indeed, when this is the case, the edges and vertices of the triangles used to
triangulate the surface form a graph which is cellularly embedded on it. An embedded graph
G is cellularly embedded on a surface with boundary Σ if Σ∖G is a disjoint union of open
discs where each disc is a face of the graph (such embeddings can be seen in Figure 1.6). In
that case, the Euler characteristic χ(Σ) of the surface, which is still de�ned as V −E+F ,
is equal to 2− 2g − b.

In a surface with boundary Σ, a curve or an arc is said to be boundary-parallel if it
is homotopic to the boundary relative to ∂Σ. Cutting along such a curve is quite irrelevant
since it yields two surfaces with boundaries: one which is homeomorphic to Σ by Theorem 2.1
and a second which is a disc or an annulus. A curve or an arc is called essential if it is
non-contractible and not boundary-parallel; intuitively, essential curves are the interesting
curves on a surface. For example, the red curves of Figure 2.4 are all essential curves.

Finally, let us formalise the notion of cutting. Let γ be a curve of Σ. In our setting, it
is possible to �nd a neighbourhood N of γ which is homeomorphic to γ × [−1, 1] and unique
in that respect. Cutting Σ along γ yields Σ∖ N̊ , where N̊ refers to the interior of N . This
intuitively represents slicing Σ along γ and letting a copy of A on both sides of the slice.
For instance, cutting a torus along a non-contractible simple curve yields a closed annulus,
and cutting a sphere along a simple curve yields two closed discs by the Jordan theorem (see
right of Figure 2.5). This operation can be generalised to cutting an orientable 3-manifold
along a surface embedded in it.

Fundamental group. Submanifolds within manifolds are relevant from a topological point
of view. We have seen, for example, that curves within surfaces are signi�cant with respect

1This theorem can be extended to compact surfaces by adding the orientability as a criterion.
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Figure 2.5: Cutting a sphere along the black simple curve.

to their topology: they exhibit �holes� in the surface. Higher dimensional holes can be
de�ned in a similar way using non-contractible k-manifolds within n-manifolds where k < n.
The study of these sub-spaces uncovered underlying algebraic structures that led to the
de�nition of homotopy groups and homology groups. Their study is the subject of algebraic
topology, which is a very rich mathematical �eld. Their precise de�nitions are complex, and
understanding the scope of their results and applications exceeds by far the ambition of this
section. Hence, we refer to Hatcher [55] for a deep introduction to these concepts; we will
only broadly present here the fundamental group as it will be used in Chapter 4.

Let Σ be a surface. A loop of Σ is an arc α whose images of the endpoints coincide. It
follows that α(0) = α(1) is called the basepoint of the loop, and α is based at α(0) = p.
Loops based at p are considered up to homotopy that preserves the basepoint, i.e., homotopies
h such that for all t ∈ [0, 1], h(0, t) = h(1, t) = p. We can now remark that loops based at
p can be added. If α and β are two loops based at p, α + β is de�ned as going through α
and then through β. Formally, α + β(t) = α(2t) if t ≤ 1

2
and β(2t − 1

2
) otherwise. It is

straightforward to check that it is indeed a loop based at p (such an addition can be seen on
Figure 2.6). We also de�ne −α as t 7→ α(1 − t) and notice that α − α = −α + α = 0 (the
= is up to homotopy preserving the basepoint). Hence, we exhibited a group structure on σ,
this group is called the fundamental group based at p and denoted π1(Σ, p).

p

α

β

p
α + β

Figure 2.6: Addition of two loops based at p on a torus.

For connected surfaces, the basepoint of loops does not really matter: all fundamental
groups based at any point are homomorphic. Hence, it makes sense to forget the basepoint
and talk about the group of the homotopy classes of curves and denote it π1(Σ): this is the
fundamental group of Σ. As a �rst application, we can study the case where Σ = T, the
torus. One can check in Figure 2.6 that α + β and β + α coincide (it can be visualised by
sliding the �wrapping� part of α+β along α to place it on the other side of p). Hence, π1(T)
is abelian. A further study shows that π1(T) = Z2, which admits {α, β} as a base. Hence,
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all curves on the torus can be decomposed as a sum of p times α + q times β where α and
β are the curves depicted in Figure 2.6.

2.1.3 Knot theory

We move on to knot theory and refer to the textbooks of Burde and Zieschang [18] or
Rolfsen [120] for readers wishing to explore the topics covered here in greater depth or to
�nd proofs for results that are only stated.

Framework. Recall that we work within a PL framework so that all knots and links that
we consider are polygonal embeddings of the circle S1, or unions of S1, into S3. For a knot,
admitting such an embedding is called being tame, which is to oppose wild knots. A wild
knot and a polygonal embedding of the trefoil knot are pictured in Figure 2.7. In the following,
pictures of knots, links, and their diagrams will often be depicted by rather smooth curves
since it is more visually pleasant. This does not matter since smooth knots admit polygonal
embeddings, so that one can always �nd an equivalent depiction with straight lines.

Figure 2.7: Left: a wild knot, right: a polygonal embedding of the trefoil knot.

We recall that neither homotopy nor homeomorphism appear as relevant notions to study
embeddings in S3 according to the current de�nition of these operations. The former sees
all knots as points (they are contractible in S3) and the latter sees all of them as S1. The
relevant notion to consider is that of ambient isotopy, a physical interpretation of which
was given in Chapter 1. An ambient isotopy between two embeddings f, g from a space X
into a manifold M is a continuous map i :M × [0, 1] →M such that:

1. i(·, 0) = idM .

2. for all t ∈ [0, 1], i(·, t) :M →M is a homeomorphism.

3. i(·, 1) ◦ f = g.

It is necessary that the equivalence relation put on knots takes into account not only knots,
which are homeomorphic to circles, but also the space �outside� of them. In the case of knots,
this space characterises them:
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Theorem 2.2 (Gordon-Luecke Theorem [49]). Two tame knots are equivalent if and only if
their complements2 are homeomorphic.

Our de�nition of ambient isotopy readily applies to surfaces with boundaries embedded in
space. Notice that such surfaces with boundaries have knots as their boundaries and ambient
isotopy is the natural equivalence notion on these embeddings. When these surfaces with
boundary are orientable, they are called Seifert surfaces of the knot, or more generally
link, which constitutes their boundary. For example, Figure 2.8 presents the Seifert surface
of minimal genus associated to the trefoil knot. The unknot is the only knot which admits
a disc as a Seifert surface. Seifert surfaces are highly useful for knot theory since many
invariants are de�ned by using Seifert surfaces of the knot, and in fact the set of Seifert
surfaces of a knot is in itself an invariant. The class of knots and links that we study in
Chapter 3 entirely stems from the de�nition of speci�c Seifert surfaces.

Figure 2.8: Three Seifert surfaces. Left: a torus with one unknot boundary component.
Middle: a closed disc with one unknot boundary component. Right: a torus with one
boundary component that is a trefoil knot.

Torus knots. In this thesis, we will be especially interested in torus knots. Providing a
lower bound for the width of their diagrams is one of the main motivations of Chapter 4, and
they are also crucial for us to design the diagrams used to prove Theorem E. Torus knots are
knots that can be embedded on a standard torus.

A standard torus is depicted on the left side of Figure 2.9, its counterpart is a knotted
surface on the right side of the same picture. Intuitively, every knot can be embedded on
a torus because one can continuously attach a tube along a knot until the two ends of the
tube meet again and merge (this process applied to a trefoil knot would yield the knotted

2To be more precise, the complement considered is S3 ∖N(K) where N(K) is a regular neighbourhood
of the knot. Furthermore, one should add that the homeomorphisms are orientation preserving, since our
de�nition of ambient isotopy forbids orientation reversal.



50 Chapter 2. Preliminaries

surface of Figure 2.9). Formally, a standard torus is a torus which is ambient isotopic to a
non self-intersecting torus of revolution. Such a torus of revolution can be obtained in R3 by
rotating a translated unit circle S1 = {(x, y, z) ∈ R3 | (x− 2)2 + z2 = 1}, which lies within
the plane of equation y = 0, around the z-axis. Its core is {(x, y, z) ∈ R3 | x2 + y2 = 4}: the
circle �inside� the torus.

Figure 2.9: Left: a standard torus. Right: a knotted torus.

A torus knot is a curve embedded on a standard torus. We have seen in Section 2.1.2
that such a curve can be parametrised by two integers p, q. Therefore, we will call Tp,q, the
torus knot which winds p times around the revolution axis and q times around the core of
the torus. In other other words, it intersects q times α and p times β, where α and β are
the curves depicted in Figure 2.6. We refer to Figure 2.10 for an illustration of T5,6 on the
standard torus and one of its diagrams.

Notice that the construction was done in R3 for clarity purposes. Furthermore, when the
standard torus is put in S3 by compacti�cation, the notion of core as the �inside� no longer
exists. Indeed, cutting S3 along a torus yields two solid tori (3-manifold homeomorphic to
S1 × B2) so that the space is symmetric for the torus. Anyway, this is not an issue for p, q
since the torus knot Tp,q is always equivalent to Tq,p in both R3 and S3.

Diagrams. One of the main features of tame knots is that they can be drawn unambigu-
ously, as we explained in Chapter 1. Let us be more formal: tame knots, seen in R3, admit
regular projections. A regular projection is a linear projection p from R3 to a plane P
such that it is injective everywhere, except on a �nite number of points, called crossings,
where two preimages are allowed. Furthermore, the crossings must come from transverse
parts of the knot. On Figure 2.11, the projection on the red plane presents two points with
more than 2 preimages: one at the intersections of 3 strands of the knot and the other, which
can be seen as the result of a segment colinear with the direction of the projection.

The existence of a regular projection for a polygonal embedding is fairly intuitive. There
is a �nite number of directions of projection that are forbidden: one for each segment. Then,
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Figure 2.10: Left: the torus knot T5,6 embedded on the standard torus. Right: a knot
diagram of one T5,6.

if for any direction of projection 3 or more strands cross on a diagram, one can slightly
perturb the direction of projection to solve that issue. 3

Diagram

Figure 2.11: A regular projection of the �gure eight knot on the blue plane, and a non
regular one on the red plane: two points of the projection have more than 2 preimages.
Bottom right: the 4-regular diagram arising from the regular projection.

3Formally, this last point can be proved by transversality arguments [74].
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The image of a regular projection is a continuous map of S1 in R2 which induces an
embedded decorated planar 4-regular graph in the plane. By compacti�cation of R2, we
obtain the knot diagram as an embedding in S2 with the same properties. This de�nition
directly extends to links so that link diagrams are de�ned the same way. In Chapter 4,
we will also be interested in diagrams of spatial graphs. They are also de�ned the same
way, except that the 4-regular property is dropped around projections of vertices. These last
points must have only one preimage. Furthermore, diagrams are considered up to ambient
isotopies of S2.

Recall from Chapter 1 that link and knot diagrams encompass the equivalence between
knots and links via Reidemeister moves depicted in Figure 2.12:

Theorem 2.3 (Reidemeister theorem [138]). Two link diagrams represent the same ambient
isotopy class of a link in S3 if and only if they are related by a �nite number of Reidemeister
moves4.

RI RII RIII

Figure 2.12: The three Reidemeister moves RI, RII, RIII.

Finally let us remark that a sequence of Reidemeister moves induces a homotopy on the
projection of the link, which is a union of curves of S2.

Linking number. When links on the projection are given orientations, it is possible to
give a sign to crossings which are illustrated on Figure 2.13. A way to remind oneself which
crossing is of which sign is to remember the following rule: when it is possible to get the under-
strand direction vector from the over-strand direction vector by an anticlockwise rotation5

of angle less than π, the crossing is said to be positive, and negative otherwise.

+ −
Figure 2.13: A positive crossing on the left, and a negative one on the right.

Half the number of positive crossings minus the number of negative crossings between
two link components of a link diagram de�nes a link invariant called the linking number.
It is one of the easiest link invariants to compute. Intuitively, it represents how many times a

4This theorem is often stated with the addition of �and an isotopy of the plane� but we consider diagrams
up to ambient isotopy anyway, so that last part is already covered.

5The author particularly prefers this direction of rotation so that readers in the same case might �nd this
rule useful.
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link component winds around another one. When two link components have non zero linking
number, one can readily conclude that they are linked i.e., cannot be separated by a sphere.
The converse is not true, as can be observed in the middle of Figure 2.14 where a Whitehead
link is depicted (it has linking number 0, but its components are linked). Deciding whether
two links are linked is the root of the problem studied in Chapter 5.

−
−
−
−

+ −

−+ +

−

Figure 2.14: Three oriented link diagrams, the sign of crossings between di�erent com-
ponents is shown in green. Their linking numbers are from left to right: −2, 0, 0.

Computational background on knots and links. From the very de�nition of ambient
isotopy comes the most fundamental algorithmic question in knot theory: the Knot Equiva-
lence problem. We are given two knots K1 and K2 and we are tasked with deciding whether
they are equivalent, that is, whether it is possible to deform one into the other by an ambient
isotopy. The best algorithm for this problem, due to Kuperberg, is elementary recursive [75],
yet the problem is not even known to be NP-hard (see for example [80, Conclusion]).

A �rst instance of this last problem is when K2 is trivial: the problem then becomes the
unknot recognition problem. A fundamental computational question is then to �gure out the
best algorithm for testing whether a given knot is the unknot. This was famously posed as
an open problem by Turing [137]. The current state of the art on this problem is that it lies
in NP [54] and co-NP [82]; a quasipolynomial time algorithm has been announced [83] but
no polynomial-time algorithm is known.

More generally, algorithmic questions surrounding knots typically display a wide gap
between the best known algorithms (which are almost never polynomial-time, and sometimes
the complexity is a tower of exponentials) and the best known complexity lower bounds. We
refer to the survey of Lackenby for a panorama of algorithms in knot theory [81].

2.2 Background on structural graph theory

The works presented in this thesis are inspired by structural graph theory. We want here
to provide some background and insights into the main topics from which we draw our
inspirations. These topics are graph minors, well-quasi-orders on graphs, and treewidth.
The results and de�nitions of Section 2.2.1 and 2.2.2 will be used in Chapter 3, while the
remaining sections are here for background and inspiration. For a further introduction to
graph theory, and in particular its structural aspects, we refer to Diestel [30].
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Our graphs may have multi-edges (several edges between two vertices) and self-loops
(edges from a vertex to itself). We will respectively denote by V (G), E(G), and L(G) the
sets of vertices, edges, and leaves (degree one vertices) of a graph G. Furthermore, recall that
a face of a graph G embedded on a surface Σ is a connected component of Σ∖G. Finally, in
Chapter 4, we will consider that trees are canonically endowed with a continuous structure,
i.e., that each edge is a continuous interval.

2.2.1 Well-quasi-order

The following contains only basic results and de�nitions relating to well-quasi-orders.
An order ≼ on a set X is said to be a well-quasi-order if for every in�nite sequence

(xn)n∈N there exist i, j ∈ N such that i < j and xi ≼ xj. Equivalently, ≼ is a well-quasi-order
if it is well-founded and has no in�nite antichain, that is, no in�nite sequence (xn)n∈N such
that no two elements of (xn) are comparable for ≼. A property P is said to be stable for an
order ≼ if for any x satisfying P and y ≼ x, then y satis�es P .

A minimal element of X for an ordering ≼ is an element x such that no y ∈ X satis�es
y ≼ x. If X is well-quasi-ordered by ≼, it directly follows that the set of minimal elements
of any subset A of X is �nite. Indeed, the set of minimal elements of A forms an antichain.

A property P is said to be stable on a set X ordered by ≼ if: for all x, y ∈ X2, if x
satis�es P and y ≼ x then y satis�es P .

Lemma 2.4. If ≼ is a well-quasi-order on some set X and P is a property that is stable for
≼, then there exists a �nite family F of elements of X such that x ∈ X satis�es P if and
only if there is no f in F such that f ≼ x.

Proof. Let S be the set of elements of X satisfying P . Then X ∖ P is a subset of X whose
set of minimal elements F is an antichain. Since ≼ is a well-quasi-order, F is �nite.

Let x be some element of X and f an element of F . If f ≼ x, then x cannot satisfy P
because this property is stable by ≼ and f ̸∈ S. For the other way around, notice that for
every element y of X∖S there exists f ∈ F such that f ≼ y by de�nition of minimal element
and re�exivity of ≼. Thus, if no element f ∈ F satis�es f ≼ x, then x ∈ S.

The family F of Lemma 2.4 is called a family of excluded minors for the property
P . Notice that if a parameter p : X → N is monotone with respect to ≼ i.e., x ≼ y
implies p(x) ≤ p(y), then for each k ∈ N, the property p(·) < k is stable for ≼ and hence is
characterised by such a �nite family of excluded minors for X.

2.2.2 Kruskal tree theorem

A �rst example of a well-quasi-order for us is one formed on trees. Whenever one is given
an in�nite family of trees, it is always possible to �nd one tree as a subpart of another one.
Before explaining the precise de�nition of subpart, let us introduce a slight re�nement of the
notion of trees, since this is the framework that we will use in Chapter 3.
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Plane trees. We call a plane tree a rooted tree where each vertex v has a label ℓ(v) from
an alphabet A, and the tree is provided with the combinatorial data of an embedding in the
plane. The embedding is given by a permutation at each vertex recording the ordering of
the edges to its children. The root induces an orientation on the tree: every edge {u, v} is
directed from u to v, written u → v, when u is closer to the root of the tree than v (i.e.,
edges go toward the leaves).

TTT

Figure 2.15: A plane tree embedded in the plane. The root is marked in red.

Homeomorphic embedding. We consider plane trees whose labels belong to a set which
is well-quasi-ordered under a relation ≤. A plane tree T1 has a homeomorphic embedding
into T2, written T1 ↪→ T2, if T1 can be obtained from T2 by iteratively (i) removing a leaf and
its adjacent edge, (ii) removing a root with a single child, its adjacent edge, and rerooting
at that child, (iii) reducing labels (with respect to ≤) and (iv) contracting paths into edges
while preserving the labels of the endpoints, where all these operations must be consistent
with the plane embedding.

Kruskal proved in 1960 that plane trees labelled by elements that are well-quasi-ordered
are also well-quasi-ordered [73]. In 1963, Nash-Williams provided a shorter proof for this
theorem [101]:

Theorem 2.5 (Kruskal's tree theorem). The homeomorphic embedding on the set of labelled
plane trees labelled by a well-quasi-order forms a well-quasi-order.

2.2.3 Graph minor

Graph minors. A graph H is said to be a minor of a graph G if it can be obtained
from G by contracting edges, deleting vertices, and deleting edges. Deleting an edge simply
removes it from E(G), while deleting a vertex also removes all its incident edges. An edge
contraction is the result of deleting the edge and merging its endpoints (see Figure 2.16).

Figure 2.16: An edge contraction of the red edge.
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A family of graphs is said to be minor-closed if it is stable by minor, i.e. if every minor
of a graph of the family also belongs to the family. The family of graphs embeddable on a
surface of genus g is an example of a minor-closed family since contracting an edge preserves
an embedding. A very powerful result from Robertson and Seymour, whose proof spanned
over 20 papers and took as many years, states that every minor-closed family of graphs is
characterised by a �nite family of excluded minors:

Theorem 2.6 (Robertson-Seymour theorem [118]). The minor relation is a well-quasi-order
on graphs.

Their result can be seen as a powerful extension of Wagner's theorem on planar graphs and
was in fact conjectured by him. For a given minor-closed family, �nding the actual �nite set
of forbidden minors is generally a highly di�cult problem that requires a deep understanding
of the speci�c class. Linkless graphs are a success in that regard since their set of excluded
minors is explicitly known. On the contrary, �nding the set of excluded minors for graphs
embeddable on the torus is still open, even if more than 17000 minimal elements have been
found [99].

Computational applications. The Robertson and Seymour theorem is fundamental from
a computational perspective. Indeed, they provided, along with the proof, an algorithm to
show that when a graph H is �xed, it is possible to decide in cubic time if H is a minor of
G. It follows that deciding any property that is stable under minors on graphs can be done
in polynomial time: it is enough to run the aforementioned algorithm on each element of
the �nite set of forbidden minors. As a result, some algorithmic problems, like deciding if
a graph is knotless i.e., can be embedded in R3 with no cycle being an unknot, are known
to admit a cubic time algorithm. Strikingly, no explicit algorithm solving this problem is
known, and only an exponential-time one is conjectured to be solving this problem [92].

Although the minor testing algorithm has been improved by Kawarabayashi, Kobayashi,
and Reed [62] to a quadratic time algorithm, the practical running time of these algorithms
turns out to be inapplicable. However, the proof of the Robertson-Seymour theorem also
had a huge impact on algorithm design in a more indirect way: it introduced the notion of
treewidth, which, as hinted at in the introduction, is very well-adapted to dynamic program-
ming and, more generally, to understanding the underlying structure of graphs.

Treewidth. We gave in Chapter 2 an idea of what treewidth is, let us now give a formal
de�nition. A bag is a subset of V (G), and a tree decomposition of a graph G is a tree T
with vertex set X1, . . . , Xn where each Xi is a bag such that:

1. Each vertex of G is in at least one bag:
⋃

iXi = V (G).

2. Every edge of G has its endpoints in a bag: ∀ {u, v} ∈ E(G),∃Xi : {u, v} ⊂ Xi.

3. For every vertex v of G, the bags containing v induce a subtree of T .

The width of this decomposition is the maximum size of a bag, minus 1. Such a tree de-
composition is depicted in Figure 2.17. The treewidth is then the minimal width of a tree
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decomposition of the graph. It follows clearly from this de�nition that trees have treewidth
0, they constitute in themselves a tree decomposition achieving this width. On the opposite,
trying to have two nodes of size less than n − 1 in a tree decomposition of Kn will quickly
lead to a contradiction showing that the complete graph Kn has treewidth n − 1. With a
straightforward but lengthy analysis, one can prove that grids p× q have treewidth min(p, q)
and that this treewidth can be achieved by a linear tree, i.e., a path.

Figure 2.17: A tree decomposition of the graph of size 3.

When a problem belongs to the complexity class NP, there always exists a brute-forcing
algorithm solving the problem in time exponential n where n is the size of the entry. When a
graph is provided with a tree decomposition of width k, one can hope to solve it faster using
the following general approach. First, we brute-force the solution in each bag, which can be
done in time exponential in k. Then we attempt to recompose these solutions together by
following the tree. When the recomposing step can be done in polynomial time, this yields an
algorithm whose complexity is O(f(k)P (n)) where P is a polynomial and f any computable
function. This is a special case of �xed-parameter tractable algorithms, often shortened
to FPT, which admit various parameters k. The design of FPT algorithms constitutes one
of the primary methods to practically solve NP-hard problems since their running time is
e�cient in practice for small values of k. We refer to [27] for a general introduction to
parameterized complexity.

2.2.4 Minors on planar graphs

It may not be obvious to the reader how this notion of treewidth is connected to the excluded
minors of Theorem 2.6. While sketching the proof of Theorem 2.6 would be too intricate
for these preliminaries, we would like to o�er a glimpse of the connection to treewidth by
explaining the idea of its proof in the easier case of planar graphs.

By adapting the proof of Nash-Williams of the Kruskal tree theorem [101] to graphs of
treewidth at most k, Robertson and Seymour proved that planar graphs of treewidth at most
k are well-quasi-ordered by the minor relation:

Proposition 2.7 ([112]). For any integer k, the class of planar graphs of treewidth at most
k is well-quasi-ordered by the minor relation.

We have seen that planar graphs admit graphs of arbitrarily large treewidth: the grids.
It turns out that any planar graph can be obtained from a large enough grid:
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Proposition 2.8 ([119]). Let G be a planar graph; there exists k such that G can be obtained
as a minor of the k × k grid.

Furthermore, grids are intimately connected to high-treewidth due to the following theo-
rem:

Proposition 2.9 ([117]). There exists a function f such that each graph of treewidth larger
than f(k) admits a grid minor of size k × k.

Hence, if we consider an in�nite family of planar graphs G, we can make the following
case disjunction. Either the treewidth of the graphs in G is not bounded. In that case,
arbitrarily large grids can be found as minors of graphs in this family by Proposition 2.9.
Furthermore, any planar graph can be obtained as a minor of a grid by Proposition 2.8. It
follows that any planar graph of the family can be obtained as a minor of another graph
of G, and thus G is well-quasi-ordered under the minor relation. The other case is if the
treewidth of elements of G is uniformly bounded by some constant: this case is handled by
Proposition 2.7. Altogether, this proves Theorem 2.10.

Theorem 2.10 ([112]). Planar graphs are well-quasi-ordered by the minor relation.

From a more general perspective, if a family of planar graphs is minor-closed, either it
has unbounded treewidth, and this family is the family of planar graphs as a whole. Or it
has bounded treewidth, and algorithm design on this class can exploit tree decompositions
of bounded size.



Chapter 3

Hopf arborescent links, and decidability

of the defect

In this chapter, we investigate a class of knots and links called Hopf arbores-
cent links, which are obtained as the boundaries of tree-like iterated plumbings
of Hopf bands. We show that for such links, computing the genus defects,
which measure how much the four-dimensional genera di�er from the classi-
cal genus, is decidable. We also show that Hopf arborescent links and some
of their Seifert surfaces form a well-quasi-order under various containment
relations.

The results of this chapter stem from our article [B], written with Pierre Dehornoy and
Arnaud de Mesmay, which appeared in the Proceedings of the 40th International Symposium
on Computational Geometry and has been invited to a Discrete & Computational Geometry
special issue of Symposium on Computational Geometry 2024. In this chapter, all the 2-
manifolds that we consider will be surfaces with boundary. For the sake of simplicity, in this
chapter, we will write surface instead of surface with boundary.

3.1 Introduction

Given how seemingly hard testing the equivalence of knots is (see Section 2.1.3), a huge body
of research has been devoted to designing and studying knot invariants in order to tell them
apart. A classical invariant of a knot is its genus: this is the smallest possible genus of
one of its Seifert surfaces. Computing the genus of a knot turns out to be signi�cantly
more tractable: celebrated works of Hass, Lagarias, and Pippenger [54] and Agol, Hass, and
Thurston [4], building on the normal surface theory of Haken [53], have shown that deciding if
a knot has genus at most g is inNP. Later, Lackenby has proved that it is also in co-NP [82].
These algorithms run also well in practice within the software Regina [20].

59
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There are, however, di�erent notions of genus that are much less understood: consider-
ing S3 as the boundary of the 4-dimensional ball B4, the 4-genus of a knot g4(K) is roughly
the smallest possible genus of a surface with boundary in B4 having the knot as its bound-
ary. This comes in two �avours that are known to not be equivalent: the topologically
locally �at 4-genus and the smooth 4-genus, depending on the regularity of the surface
with boundary. We refer to Section 3.2 for precise de�nitions. A knot is (topologically or
smoothly) slice if it bounds a disc in B4, i.e., has 4-genus zero. One of the motivations for
the study of such 4-dimensional invariants comes from algebraic geometry, as such surfaces
arise naturally around singularities of algebraic curves in C2 [72, 122]. Another motivation
is the slice-ribbon conjecture [41], which states that a knot is smoothly slice if and only if it
is ribbon, i.e., it bounds an immersed disc in S3 with only ribbon-type singularities. From
a more elementary point of view, the unknotting number, which is the minimal number
of crossings to change in a knot diagram to transform the associated knot into the trivial
one, is a basic measure for the complexity of a knot. However, this remains, up to now,
an extremely hard quantity to compute and study: for example, the unknotting number of
all 11 crossing prime knots is still unknown. Interestingly, the smooth 4-genus of knots is a
lower bound for it [102]. The idea is that modifying k crossings can be seen as a homotopy
in S3× [0, 1] which induces a surface with k �singularities�. Replacing these singularities with
annuli yields a surface with genus k in B4 that has the knot as its boundary.

Unfortunately, no algorithmic framework at all is known to attack topological problems
in 4-dimensional topology, and indeed many of these problems are known to be undecidable,
e.g., the homeomorphism of 4-manifolds [89]. For some other problems, the decidability is a
well-known open problem: this is the case for 4-sphere recognition [141] or embeddability of
2-dimensional complexes in R4 [90]. Similarly, no algorithm is known to decide the 4-genus
of a knot or even to decide whether it is slice. To illustrate how hard these problems are, it
is only in a recent breakthrough of Picirillo [109] that it was proved that the Conway knot is
not smoothly slice, although it only has 11 crossings. From the perspective of lower bounds,
recent work of de Mesmay, Rieck, Sedgwick, and Tancer [29] has proved that an analogue of
the 4-genus for links, the 4-ball Euler characteristic, is NP-hard to compute, but it is also
not known to be decidable.

Our results. The goal of this chapter is to investigate the structure of a particular
class of links, which we call Hopf arborescent links, in order to prove the decidability of
some of their 4-dimensional invariants. This family of links is informally de�ned as follows
(we refer to Section 3.2 for more precise de�nitions).

A Hopf band is the surface pictured in Figure 3.1 (top left) that has a Hopf link as its
boundary, it can be either positive or negative depending on how it twists. If they are
unlinked, i.e., if there exists a sphere separating them, two Hopf bands can be plumbed
together by identifying a square in one to a square in the other, as pictured in Figure 3.1
(top). The class of Hopf arborescent links is the class of links arising as the boundary
of some iterated tree-like sequence of plumbings of Hopf bands. Hopf arborescent links can
naturally be described using labelled trees, see Figure 3.1 (bottom), and are a subfamily of
the more general arborescent links [16, 45]. The (topological or smooth) genus defect of a
knot is de�ned as ∆g(K) = g(K)− g4(K). It measures how much its 4-genus di�ers from its
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Figure 3.1: Top: A positive Hopf band and a plumbing. Bottom: An Hopf arborescent
link and an associated planar tree.

classical genus, and this de�nition can be extended to oriented links by considering surfaces
having that oriented link as their boundary. Our main result is the following:

Theorem A. For any �xed k, deciding whether a Hopf arborescent link L has genus defect
at most k is decidable. This holds both in the topological and smooth categories.

The proof of Theorem A is not constructive. It is obtained as a corollary of another result,
which establishes a well-behaved minor theory for Hopf arborescent links. A subsurface Σ′ ⊆
Σ of a Seifert surface Σ is incompressible if the complement Σ \ Σ′ has no open disc
component. Given two Seifert surfaces Σ1 and Σ2 in R3, we say that Σ1 is a surface-minor
of Σ2 (or minor for short), denoted by Σ1 ≼ Σ2, if Σ1 is isotopic to an incompressible
subsurface of Σ2. This minor relation was introduced by Baader [7] (see also [8, 9]) with the
goal of characterising those links that are closures of positive braids and whose signature is
equal to twice their genus. The underlying question, still open today, is whether the canonical
Seifert surfaces associated with positive braid closures form a well-quasi-order. A speci�city
of Hopf arborescent links is that they are �bred (see the de�nition in Section 3.2). This
implies that to each link is associated a canonical Seifert surface (see Theorem 3.2), that we
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call a Hopf arborescent surface. The notion of surface-minor naturally implies a minor
relation for Hopf arborescent links. Our second result proves that Hopf arborescent surfaces
are well-quasi-ordered under surface-minors.

Theorem B. The minor relation ≼ is a well-quasi-order for the set of Hopf arborescent
surfaces, that is, for any in�nite sequence (Σn)n∈N of Hopf arborescent surfaces, there exists
i < j in N such that Σi ≼ Σj.

The idea behind the proof of Theorem B is to study a speci�c subset of the possible
surface-minors that interacts nicely with an encoding of Hopf arborescent surfaces via labelled
plane trees. We can then leverage the celebrated Kruskal tree theorem [73], presented in
Section 2.2 in the form of Theorem 2.5, to prove that the minor relation is a well-quasi-order.
The connection from Theorem B to Theorem A follows from the fact that the genus defect
is minor-monotone, i.e., if Σ1 ≼ Σ2 are Seifert surfaces of minimal genus for links K1 and
K2, then ∆g(K1) ≤ ∆g(K2). This is not a new observation (see [10, Lemma 6]), we provide
a proof in Proposition 3.11 for completeness. Therefore, for Hopf arborescent links, having
genus defect at most k is characterised by a �nite number of forbidden minors, and the
algorithm of Theorem A proceeds by checking those. However, testing whether a surface is
a minor of another one seems to be a very hard problem: even testing whether two tori are
isotopic is already as hard as knot equivalence, and an algorithm for genus two surfaces was
only very recently found [11]. This problem is circumvented thanks to our restriction of the
minor relation to one that is well-tailored to the arborescent structure of our links, which
allows us to work entirely at the level of trees. In particular, Theorem A does not strictly
follow from Theorem B but rather from its proof, relying on Proposition 3.9.

While the algorithms behind Theorem A are not explicit, we would like to o�er three
reasons to motivate our results. First, Theorem A proves that the corresponding problems
are not undecidable, which is a signi�cant result in the landscape of 4-dimensional topology.
Second, this kind of existential algorithmic result has been a strong guiding light in algorithm
design in the past decades. Indeed, for a vast family of graph problems, the fact that
an algorithm merely exists follows from Robertson-Seymour theory, and this has provided
a strong impetus to actually look for explicit algorithms and optimise their complexity.
This has been particularly in�uential in parameterized algorithms: we refer, for example,
to the discussion in Chapter 6.3 in the book on parameterized algorithms [27], where it is
conjectured that a result like our Theorem A precludes W[1]-hardness. Similarly, we are
hopeful that our results can inspire future work aiming at developing explicit algorithms
in 4-dimensional topology. Additionally, our framework directly proves that any property
that is stable with respect to our link-minor relation (see Section 3.3.4) is decidable on the
class of Hopf arborescent links. Finally, while it is certainly not the case that minor-based
approaches can encompass the entirety of knot theory, it is fruitful to delineate exactly the
classes which they can illuminate. In that respect, we �nd it interesting that our proof of
Theorem B strongly relies on the structure of Hopf bands and does not seem to generalise to
the wider family of arborescent knots, even when one bounds the number of twists in each
band (see Remark 3.10).
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Related work. It was observed by Baader and Dehornoy [8, 84] that the natural Seifert
surfaces for another class of knots, the positive braid knots with bounded braid index (we
refer to the papers for the relevant de�nitions) also form a well-quasi-order. Furthermore,
Liechti [84] proved that even without bounding the braid index, the set of positive braid knots
of bounded genus defect is characterised by a �nite number of forbidden minors. Since the
minor relation in that setting simply amounts to removing letters in the braid presentation,
this readily yields decidability as in our Theorem A. While the two results are incomparable,
we emphasise that our result also applies to links and also features negative crossings (coming
from negative Hopf bands). This last point extends the impact of our result to the smooth
category, while for strongly quasipositive knots (and thus positive braid knots), the smooth
defect is zero since the smooth 4-genus and the classical genus coincide [122].

All the knots and links we consider, as well as those considered by various authors in
the context of surface-minor theory, are �bred (see again the de�nition in Section 3.2). This
property is important as it brings control to the classical genus of the links. Also, it is easy
to construct in�nite families of incomparable surfaces when dropping this assumption: the
set (An)n∈Z of those unknotted annuli in S3 with n twists forms an in�nite antichain. In this
direction, an optimistic conjecture would be that the collection of all �bred surfaces in S3 is
a well-quasi-ordered set. If true, that would provide a strong generalisation of Theorem B.
However, no strategy of proof is known to the authors for such a statement.

Also, it follows from a result of Giroux and Goodman [48] that any �bred link can
be obtained from the unknot from a sequence of plumbings and deplumbings (a natural
reverse operation to plumbing) of Hopf bands. While these (de)plumbings might not have the
arborescent structure that characterises ours, this shows that Hopf bands can be considered
as basic building blocks for a wide class of three-dimensional objects.

Organisation of this chapter. After providing background and going through the
speci�cs of this chapter in Section 3.2, we focus on Hopf arborescent links in Section 3.3.
There, we de�ne a precise construction of these links from plane trees, investigate this class
of links, and prove Theorem B. In Section 3.4, we prove Theorem A. Finally, in Section 3.5,
we �rst provide examples of Hopf arborescent links with non zero defect, and then explain
how to combine them to obtain examples with arbitrarily large defect.

3.2 Speci�c preliminaries

Knot theory. We only recall the de�nitions that are critical to this chapter and refer
to Teichner [136] for a beginner-friendly introduction to the 4-dimensional aspects of knot
theory.

In this chapter, every knot and link component is endowed with an orientation inherited
from the orientation of S1. For algorithmic purposes, we assume that an input link is given
as a link diagram, encoded by a directed 4-valent planar graph with decorations at vertices
indicating which strands are going over and under. Since this chapter focuses on decidability
problems, switching to a di�erent input, e.g., polygonal curves in R3, makes no di�erence.
Furthermore, Seifert surfaces need to be consistent with orientation: for an oriented link L
a Seifert surface is a compact connected oriented surface Σ embedded in S3 such that the
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oriented boundary of Σ is L (see, for example, the oriented Hopf links of Figure 3.2). The
genus of a link L, denoted by g(L), is the smallest possible genus of a Seifert surface for L.

The 3-dimensional sphere can be seen as the boundary of the 4-dimensional ball B4. Being
embedded in S3, a knot or a link can also be obtained as the boundary of surfaces embedded
in B4. However, any knot K in S3 can be used as a base that tapers to a point, the apex,
inside B4 to de�ne a cone that bounds K. Hence, any knot in S3 bounds a topological disc in
B4. This motivates the following de�nition: a surface Σ embedded in B4 is locally �at if for
each point x ∈ Σ, there is a neighbourhood U in Σ and a neighbourhood V in B4 such that
the pair (U, V ) is homeomorphic to the standard (B̊2, B̊4). In the coning construction above,
the latter condition is not satis�ed at the apex, where the boundary of a disc is the knot
instead of a standard S1. The topological (respectively smooth) 4-dimensional genus,
or simply 4-genus of a link L, denoted by1 g4(L) is the smallest possible genus of a compact
connected oriented surface that is locally �at (respectively smoothly) embedded in B4, and
that has L as its boundary.

A knot is topologically (resp. smoothly) slice if it bounds a locally �at (resp. a
smooth) disc in B4. The (topological or smooth) defect of a link L is the quantity
∆g(L) = g(L)− g4(L), where g4(L) denotes the topological or smooth 4-genus of L.

A positive, resp. negative, Hopf band is an unknotted annulus as pictured in Fig-
ure 3.2 with a positive, resp. negative, full twist. A Hopf link is the boundary of a Hopf
band. Note that the two components of a positive Hopf link have linking number +1, while
the two components of a negative Hopf link have linking number −1. A Hopf band naturally
retracts to a trivial knot, which we call its core.

>

>

>

>

Figure 3.2: A negative Hopf band on the left and a positive one on the right with its
core in red.

A link is �bred if the complement S3 \ L �bres over S1, that is, if there exists a one-
parameter continuous family of Seifert surfaces (Σt)t∈S1 for L which are disjoint except for
their boundaries and whose interiors together foliate S3 \L. These are called �bres or �bre
surfaces. Note that they are all ambient isotopic by de�nition.

A positive, resp. negative, Hopf link is �bred, with �bre the positive, resp. negative,
Hopf band. Indeed, seeing S3 as the unit sphere {(z1, z2) | |z1|2 + |z2|2 = 1} in C2, a positive
Hopf link is given by the equation z1z2 = 0. For every argument θ ∈ S1, the equation

1Our notation is intentionally ambiguous with respect to smooth or topological genus, because all our
arguments will apply equally well in both categories.
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arg(z1z2) = θ describes a Seifert surface bounded by the Hopf link, and the collection of
these surfaces describes the desired �bration.

It is a folklore result that goes back at least to Stallings [134] that a �bre surface of a
�bred link is a Seifert surface of minimal genus, and moreover this surface is unique up to
isotopy (see next paragraph). So, for �bred links - and all links in this chapter will be �bred
- it makes sense to speak of the canonical Seifert surface, by which we mean the unique
�bre surface for that link up to ambient isotopies.

Fibre surface, minimal genus, and uniqueness. Here, we comment on the following
statements, which are considered folklore in the knot theoretical community. The �rst one is
fundamental for this chapter since it brings control over the genus of Hopf arborescent links.
The second one justi�es the notion of canonical Seifert surface for �bred links.

Theorem 3.1. Fibred surfaces minimise the genus over surfaces with the same oriented
boundary.

Theorem 3.2. Two �bred surfaces with the same oriented boundary are isotopic, relatively
to the boundary.

Theorem 3.1 is often presented as a consequence of Stallings' Theorem [134]. Here we
present a semi-elementary proof (for which we claim no novelty), in the sense that it only
uses basic notions and results from homology theory, we refer to [55] for an introduction to
this theory.

Proof of Theorem 3.1. Let L = (L1 ⊔ · · · ⊔ Lk) be an oriented link in S3. We consider the
3-manifold NL which is the complement of an open tubular neighbourhood of L in S3. It has
k boundary components, which are all tori.

Note the following isomorphisms from elementary algebraic topology: by excision [55,
p119], one has H2(S

3, L;Z) ≃ H2(NL, ∂NL;Z); in the long exact sequence · · · → H2(S
3;Z) →

H2(S
3, L;Z) → H1(L;Z) → H1(S

3;Z) → . . . the �rst and last term are trivial so the bound-
ary map gives an isomorphism ∂ : H2(S

3, L;Z) → H1(L;Z); and by Alexander duality [55,
p254], H1(S3 \ L;Z) is isomorphic to H1(L;Z) ≃ Zk.

The second isomorphism states that a class in H2(S
3, L;Z) is described by its boundary.

That means that when we restrict our attention to oriented Seifert surfaces for L, i.e., sur-
faces S so that ∂S = L, all such surfaces lie in the class ∂−1(1, . . . , 1). In particular, they are
homologous. Given two such surfaces, one can consider their restrictions S1, S2 to NL, where
they are also homologous. Their boundaries are curves on the tori ∂NL, which therefore have
the same homology class. With an isotopy it is thus possible to make S1, S2 parallel and
disjoint in a neighbourhood of ∂NL.

The class of the Seifert surfaces bounded by L is dual to the class Lk(·, L1) + · · · +
Lk(·, Lk) ∈ H1(S3 \ L;Z). We denote the latter by ℓL. We then consider the in�nite cyclic
covering N̂L → NL associated to ℓL. This is the covering associated to the morphism ℓL :
π1(S

3 \ L) → Z, so that π1(N̂L) = ker(ℓL).
One way to construct N̂L is to consider an arbitrary Seifert surface S for L, cut N̂L

along S, thus obtaining a 3-manifold with boundary NL,S. This boundary consists of three
parts: a �horizontal part� composed of two copies of S that we denote by S+ and S−, and
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a �vertical part� coming from ∂NL which consists of k annuli (or sutures) connecting S+

to S−. Now consider Z copies (Nn
L,S)n∈Z of NL,S. Call S+

n and S−
n the horizontal part of the

boundaries, and for every n ∈ N glue S+
n to S−

n+1. The resulting 3-manifold ∪n∈ZNn
L,S has

a natural projection to NL, and the loops in NL that lift to closed loops in N̂L are exactly
those in the kernel of ℓL. Therefore we indeed constructed N̂L.

Now suppose that S3 \L �bres over the circle with �bres having L as oriented boundary.
Then the previous construction can be made by choosing for the surface S a �bre. In this
case NL,S is the product manifold S × [0, 1], and N̂L is homeomorphic to S ×R.

Consider now an arbitrary Seifert surface S ′ for L with oriented boundary L. Then S ′ is
homologous to S, and in particular it is also dual to ℓL. So S ′ lifts in N̂L as Z parallel copies
(S ′

n)n∈Z. Take any such component S ′
0, since it lies in N̂L ≃ S × R, the projection on the

�rst coordinate induces a map f : S ′
0 → S. Looking at the neighbourhood of the common

boundary ∂S = L = ∂S ′
0 we see that f has degree 1. Degree 1 maps induce surjections in

homology, which implies the desired inequality. More concretely, one can argue as follows: if
there was a class a ∈ H1(S;Z) in the kernel of f ∗, then there would be a class b such that the
cup-product a ⌣ b is the fundamental class [S] ∈ H2(S;Z), and therefore one would have
f ∗([S]) = f ∗(a) ⌣ f ∗(b) = 0 ̸= [S ′

0], a contradiction. Therefore there is a linear injection
from H1(S;Z) ≃ Z2g(S)+k−1 into H1(S

′
0;Z) ≃ Z2g(S′

0)+k−1. This implies g(S) ≤ g(S ′
0), and

proves the statement.

Theorem 3.2 is sometimes also attributed to Stallings, but we could not �nd a corre-
sponding statement in Stallings' articles. However, a proof is proposed by Whitten [142],
which relies on the fundamental work of Waldhausen [140]. Indeed, if S1 is a �bre surface
for a link L, then the in�nite cyclic covering N̂L constructed in the proof of Theorem 3.1 is
homeomorphic to S1 × R. If S2 is a Seifert surface for L that is also a �bred surface, then
Theorem 3.1 implies that it is of minimal genus. Therefore any of its lifts in N̂L is incompress-
ible (for otherwise it would not minimise the genus). One can pick a lift S ′

2 that is disjoint
of S1 × {0} and assume it lives in S1 × (0, N) for some large enough N . Proposition 3.1 of
Waldhausen [140] then implies that S ′

2 is isotopic to S1 × {0}. Projecting back in NL yields
an isotopy from S2 to S1. The proof of [140, Proposition 3.1] seems too long to be detailed
here. We only mention that it works by an induction on the complexity of the surface S1

and by cutting it along curves until it is a disc.

Plane trees. We recall and precise plane tree and homeomorphic embedding in this chap-
ter.

A plane tree is a rooted tree where each vertex v has a label ℓ(v) from the alphabet
{+,−} endowed with the empty ordering ≤. Furthermore, the tree is provided with the
combinatorial data of an embedding in the plane i.e., each vertex is additionally given a
permutation recording the ordering of the edges to its children. In addition, the root induces
an orientation on the tree: every edge {u, v} is directed from u to v, written u→ v, when u
is closer to the root of the tree than v, i.e., edges go toward the leaves, we refer to the trees
of Figure 3.5 for examples.

A plane tree T1 has a homeomorphic embedding into T2, written T1 ↪→ T2, if T1 can
be obtained from T2 by iteratively (i) removing a leaf and its adjacent edge, (ii) removing a
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root with a single child, its adjacent edge and rerooting at that child, and (iv) contracting
paths into edges while preserving the labels of the endpoints, where all these operations must
be consistent with the plane embedding. Throughout this chapter, the relation ≤ will be
trivial, so that (iii) of Section 2.2 will never apply. We recall that this notion it is more
restrictive than the notion of minor on graphs, which allows us to contract any edge to a
point: in our case we can only contract paths to at least one edge (see Figure 3.3). This
property turns out to be critical in order to make our proofs work. Theorem 2.5 states that
this order is a well-quasi-order on the set of labelled plane trees.

TA

Figure 3.3: The tree A is a graph minor of T but does not embeds homeomorphically
on it.

3.3 Hopf arborescent links

Arborescent links are a class of knots and links originally de�ned and studied by Conway2.
This class has received much attention from knot theorists [16, 45, 126]. In this chapter we
study a subclass that we call Hopf arborescent links.

3.3.1 Hopf plumbing

The links that we investigate here are boundaries of surfaces which are de�ned iteratively
from Hopf bands using an operation called plumbing.

Let H be a Hopf band and Σ be an oriented surface with boundary, and let us assume
that they are unlinked, i.e., that there exists a sphere S in S3 separating them. To plumb H
on Σ, pick an arc α on Σ whose endpoints lie on ∂Σ and which is not boundary parallel (i.e.,
α is not isotopic relatively to its endpoints to an arc in ∂Σ). Let D be a small neighbourhood
of α in Σ that we see as a rectangle with two sides on ∂Σ and two sides in the interior of Σ.
Isotope Σ within S3 \ S so that it intersects S exactly on D, see Figure 3.4, left. Then,
de�ne similarly D′ a neighbourhood of the unique (up to isotopy) non boundary parallel arc
in H with endpoints in ∂H. The orientations of Σ and H induce an orientation of the normal
direction to the surface (so that concatenating the orientation of the surface with the positive
normal direction gives a positive basis in S3). Finally, isotope H within its component of
S3 \ S, so that D and D′ are identi�ed on S in a way that the sides of D that are on ∂S
are matched with the sides of D′ that are not on ∂H and the orientations of both rectangles
match. The resulting surface is said to be obtained from Σ by Hopf plumbing H on top

2Conway called them algebraic links, but this denomination is now more used for the links that come
from algebraic curves in C2.
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of Σ along α, see Figure 3.4. For the sake of simplicity, and when we do not need to specify
α, we will denote this operation by Hopf plumbing.

S

D
α

Σ

H

D′ Hopf

Plumbing

S

Figure 3.4: A Hopf plumbing of a Hopf band H on top of a Seifert surface Σ along α.

Hopf plumbing is a special case of a more general operation called a Murasugi sum,
see [97, 104]. A key property of Murasugi sums, proved by Gabai [44], is that it preserves
�bredness. In the above setting, since Hopf bands and Σ are �bred, then the surface obtained
from Σ by Hopf plumbing H on Σ along any arc is also �bred.

3.3.2 From plane trees to Hopf arborescent surfaces and links

Let T be a plane tree. The associated surface Σ(T ) we construct is an oriented surface with
boundary that retracts on the union of a �nite set of oriented simple curves CT parametrised
by the vertices of T . Furthermore, every α ∈ CT is the core of a Hopf band embedded on Σ
whose sign is the label of the corresponding vertex in T . For a vertex v in T , the curve α(v)
intersects another curve α(v′) if and only vv′ is an edge of T , and the two curves intersect
exactly once. Moreover, following α(v) with its given orientation, the cyclic ordering of the
intersection points with the curves α(v′) coincides with the cyclic orderings of the neighbours
of v in the plane tree T .

We now describe the construction inductively, see Figure 3.5 for an illustration.

Construction of Hopf arborescent surfaces:

1. Start from a Hopf band H(vr) where vr is the root of T , and whose sign is the
label ℓ(vr).

2. For the induction step, assume that the tree T ′ is obtained from T by adding at
a leaf v a �nite number of leaves v1, . . . , vk appearing in the plane in this order
around v, and that the surface Σ(T ) is already constructed with its set of core
curves CT .

a) Since v is a leaf in T , the curve α(v) intersects only one curve α(v′): the
curve associated to v′, the parent of v in T .
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Figure 3.5: A 3D-view of a Hopf arborescent link and its construction from two di�erent
plane trees. The chosen orientation of the root of each tree is indicated on the coloured
core of the matching Hopf band. The orientation of the plane is counter-clockwise.

b) Starting from this intersection point, we place k points p1, . . . , pk on α(v)
in this order. Then we draw on Σ(T ) a family of k arcs β1, . . . , βk from ∂S
to itself that correspond to those arcs that retract on p1, . . . , pk. Each such
arc βi intersects the collection CT exactly at the point pi.

c) For i = 1, . . . , k, perform the Hopf plumbing of a Hopf band H(vi) of
sign ℓ(vi) on top of Σ(T ) along the arc βi. The resulting surface is Σ(T ′).

d) Finally, for every i orient the core of H(vi) so that when going from α(v)
to α(vi), we follow this rule: if ℓ(v) is positive, one turns to the left (with
respect to the orientation of Σ(T )), and if ℓ(v) is negative, one turns to the
right (once again with respect to the orientation of Σ(T )), see Figure 3.6.
The set CT ′ is the union of CT with α(v1), . . . , α(vk).

De�nition 3.3. A Hopf arborescent surface is a surface Σ(T ) obtained from a plane tree
T by this construction (see Figure 3.5 for an example). A Hopf arborescent link is the
boundary of a Hopf arborescent surface (see the boundary of Figure 3.5 or the bottom left of
Figure 3.1 for instance).

Since Hopf bands are �bred and this property is preserved under plumbing, Hopf arbores-
cent surfaces are �bres for their boundaries, and are thus of minimal genus. The arbitrary-
looking rule that we use to orient the cores of the Hopf band in Step 2d is new and will turn
out to be key for our proofs of Theorem B and Proposition 3.4.
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◀◀◀

▶

Figure 3.6: Orientation of the green core when its associated Hopf band (unsigned as it
does not matter for the rule) is plumbed on top of the Hopf band with the red core.

3.3.3 Connections to other classes of knots

Here, we provide some additional background on Hopf arborescent links, their plumbing
structure and their relations to other classes (arborescent links and �bred links). In particular,
one may think that considering rooted trees and always plumbing the new Hopf bands on
top of the surface is a strong restriction. We will show that this is not the case, i.e., that the
family of surfaces and links obtained with less restriction on the sides on which one plumbs
is the same as the family considered here.

Arborescent knots. Our de�nition di�ers from the classical de�nition(s) of arborescent
links, e.g., in [16, 45] and their encoding via plane trees in three ways. Firstly, we restrict our
attention to Hopf bands and not general unknotted annuli, hence the name Hopf arborescent
links. This restriction is essential to our approach, and the minor theory we develop does
not extend when one drops this assumption, as Remark 3.10 shows.

= =

Plumbing on

bottom

Plumbing on

top

Figure 3.7: Surfaces obtained by plumbing a Hopf band inside or outside a Seifert surface
are isotopic.

Secondly, an arborescent surface is, in general, de�ned as a surface that retracts on a
collection of core curves whose intersection pattern is a tree. One can show that in this
case, the surface can be reconstructed using an algorithm similar to the one we propose in
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Section 3.3.2. The main di�erence is that when gluing a new band to the surface, it may be
glued on top or below the surface. This di�erence could let one think that our construction is
more peculiar than the standard one. However, it was remarked by Misev [94] that gluing a
Hopf band on top or below an arc yields isotopic surfaces, see Figure 3.7. The only di�erence
is that the orientation of the core curves of the glued band is then reversed. This change
of orientation then implies that all vertices of the subtree subsequently glued to this band
should be reversed to have the same surface. This argument shows that the set of surfaces
we construct actually coincides with the set of surfaces obtained by the classical construction
of arborescent links using Hopf bands only. The reason why we chose our presentation, i.e.,
always gluing on top when going away from the root of the tree, is that it is more practical
with respect to our minor theory, and in particular it simpli�es the proof of Lemma 3.8.

⊤ ⊥ ⊤= =
Figure 3.8: The surface does not depend on where the twists are.

Thirdly, the usual encoding of arborescent knots with plane trees [16, Chapter 12] is more
detailed in that it puts the number of twists between each pair of adjacent edges around each
vertex. Here, since bands have either 2 positive crossings or 2 negative crossings, Figure 3.8
shows that we do not need to specify where the twists are on the band, and thus indicating
the sign of the band on each vertex is su�cient.

As noticed in Section 3.4.2 with the set T (L), it may happen that several trees yield the
same isotopy class of oriented link and the same surface. In other words, our construction
induces a well-de�ned map from plane trees to isotopy classes of surfaces in S3, but this
map may not be injective, see Figure 3.5 for two di�erent plane trees yielding the same link.
This lack of injectivity is not an issue for the problems we address in this chapter, for the
preimage of a given link or surface is �nite. However, it is carefully studied by Bonahon and
Siebenmann [16] who give a recipe to detect, in the more general case of arborescent links,
when two Z-labelled plane trees yield isotopic links.

More general plumbing structures. By construction, the tree T involved in de�ning
a Hopf arborescent surface Σ(T ) is the intersection graph of the set of core curves CT . It
may well happen that a surface retracts on di�erent collections of Hopf curves [95, 16] whose
intersection pattern is very di�erent from T , and in particular is not a tree. In that case,
the surface can still be obtained by a sequence of Hopf plumbings, but some plumbings are
made on arcs that intersect the core of more than one Hopf band. On Figure 3.9 for example,
the green curve on the right is indeed the core of a Hopf band, see the top of Figure 3.10 to
picture how a tubular neighbourhood of the core is a band with two positive crossings.

3.3.4 Minors on surfaces, links, and plane trees

Since we focus our investigation on Hopf arborescent links, we de�ne a stronger notion of
minor that is well-tailored to these links. We say that a Hopf arborescent link L1 is a link-
minor of L2 if there exist T1 and T2, two labelled plane trees such that Σ(T1) and Σ(T2) are
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Figure 3.9: A Hopf arborescent plumbing with a cyclic plumbing graph.

canonical Seifert surfaces of L1 and L2 respectively, and T1 ↪→ T2. The main result of this
section is the following one: establishing that if L1 is a link-minor of L2, then the Seifert
surface of L1 is a surface-minor of the Seifert surface of L2.

Proposition 3.4. Let T1 and T2 be two plane trees such that T1 admits a homeomorphic
embedding into T2. Then the Hopf arborescent surface Σ(T1) is an incompressible subsurface
of Σ(T2).

The proof relies on Lemmas 3.6, 3.7, and 3.8, which correspond respectively to the oper-
ations (i), (ii), and (iv) de�ning homeomorphic embeddings of trees. We �rst prove:

Lemma 3.5. Let Σ be a surface and γ be an arc that is not boundary-parallel in Σ with both
extremities in ∂Σ. Then cutting Σ along γ yields a surface Σ′ = Σ∖ γ such that Σ′ ≼ Σ.

Proof. By de�nition of Σ′, there is a natural map h : Σ′ → Σ that is injective except on
h−1(γ) = γ1 ∪ γ2. Let T be a tubular neighbourhood of γ in Σ. Its boundary can be
decomposed into t1, t2, two arcs isotopic to γ in Σ and two open arcs of ∂Σ. Isotope h
within Σ so that h(γ1) = t1, h(γ2) = t2, and h(Σ′) ∩ T = t1 ∪ t2. It follows that h(Σ′) is a
subsurface of Σ such that Σ∖ Σ′ is not an open disc since γ is not boundary-parallel.

Lemma 3.5 essentially states that our surfaces behave well with respect to the surface-
minor relation when cut along any essential arc. An important point is that cutting along
an arc that is the diagonal of a plumbing rectangle merges two bands into one new band
with two extra crossings that are either negative or positive depending on the diagonal, see
Figure 3.10. So, cutting the plumbing of two positive Hopf bands along the diagonal that
produces two negative crossings yields a positive Hopf band. Symmetrically, one can merge
two negative Hopf bands into one negative by cutting along the other diagonal. Furthermore,
when having a plumbing of two bands with opposite signs, one can merge them into a band
with either sign depending on which cut one chooses.
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γ1 Cut along γ1 =

γ2
Cut along γ2 =

γ2

γ1

�at
drawing

RI RIII RI

RI RIII RI

Figure 3.10: Cutting a Hopf plumbing of two positive Hopf bands along the diagonal
γ2 (resp. γ1) induces 2 positive (resp. negative) crossings. The Reidemeister moves are
shown to help understand which crossings are obtained. The top right surface is a Hopf
band, while the bottom right one is a band with 3 positive full twists.

Lemma 3.6. Assume that T1 is obtained from T2 by deleting a leaf. Then Σ(T1) is an
incompressible subsurface of Σ(T2).

Proof. Let D be the plumbing rectangle of the Hopf band H associated to the additional
leaf v of T2 compared to T1. By de�nition, D has two sides γ1, γ2 in ∂Σ(T1). Thus γ1 is
also an arc of Σ(T2) with its extremities in ∂Σ(T2). By Lemma 3.5, Σ(T2) cut along γ1 is an
incompressible subsurface Σ′ of Σ(T2). Furthermore, the remaining of H is a disc that can
be isotoped into a neighbourhood of γ2 so that Σ(T1) = Σ′ ≼ Σ(T2), see Figure 3.11.

A very similar proof yields the following lemma.

Lemma 3.7. Assume that T1 is a plane tree whose root has only one child, and T2 is the
subtree rooted at that child. Then Σ(T1) is an incompressible subsurface of Σ(T2).



74 Chapter 3.

Σ(T2)

H
γ2

γ1

cut

along γ1
Σ′

H
γ2

= Σ(T1)

Figure 3.11: Deleting a leaf yields a surface-minor.

Proof. The proof is identical to the previous one: in that situation, Σ(T1) is obtained
from Σ(T2) by plumbing a Hopf band, and cutting along one of the boundaries of the plumb-
ing disc provides the needed incompressible subsurface, as in Figure 3.11.

Lemma 3.8. Assume that T2 is a plane tree in which u → v → w are three consecutive
vertices where v has degree 2, and that T1 is obtained from T2 by contracting u → v → w
into a single edge u → w, while preserving the labels of the endpoints. Then Σ(T1) is an
incompressible subsurface of Σ(T2).

Proof. By the construction of Hopf arborescent surfaces, the edge between u and v in T2
corresponds to a plumbing rectangle D. It is important to recall here our orientation con-
vention: if u is labelled positively, the cores α(u) and α(v) are oriented so that one turns
to the left when going from u to v at the rectangle D, while if v is labelled negatively, one
turns to the right, see Figure 3.6. Now, we consider two diagonal arcs γ1 and γ2 on the
plumbing rectangle D as pictured in Figure 3.10. When cutting along such a diagonal arc,
we obtain a new surface in which the cores α(u) and α(v) merge into a single core. However,
their orientations might mismatch, depending on whether we cut along γ1 or γ2. We take the
convention that γ1 is the arc that preserves the orientations, while γ2 induces an orientation
mismatch, see Figures 3.10 and 3.12.

Now, let us �rst consider the case where the labels of u and v are the same. In this case,
we consider the subsurface Σ′ of Σ(T2) obtained by cutting along γ1. This has the e�ect of
merging the core curves α(u) and α(v) in a way that respects their orientations. However, it
might seem that since each curve α(u) and α(v) corresponds to a Hopf band, merging them
like that yields a band that twists too much. But a key observation is that cutting along γ1
adds a twist between these two bands, as pictured in Figure 3.10, and this twist is negative
when the bands are positive, while it is positive when the bands are negative (indeed, this
is the reason for our orientation convention). Therefore, the resulting surface Σ′ is exactly
the same as the one corresponding to the tree T1, and therefore Σ(T1) is an incompressible
subsurface of Σ(T2) by Lemma 3.5. See the top and bottom pictures of Figure 3.12 for an
illustration.

Now, let us consider the case where the label of u is + while the label of v is −. In that
case, we consider the surface Σ′ of Σ(T2) obtained by cutting along γ2. This has the e�ect
of merging the core curves α(u) and α(v) but with an orientation mismatch. We take the
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convention that the resulting core curve α′ is oriented by α(u), and therefore disagrees with
the orientation of α(v) while it follows it. Since u and v are labelled with opposite signs, the
two twists on their Hopf bands cancel out, but cutting along γ2 adds a new positive twist,
therefore we can consider α′ as being the core curve of a positive Hopf band. Now, let us
consider the plumbing rectangle D′ corresponding to the edge between v and w. Due to
the orientation mismatch, arriving at this rectangle from α′, we are oriented in the direction
opposed to the one we would arrive with if we were arriving from α(v). But due to the
orientation convention, when going from α(v) to α(w) in Σ(T2) we turn to the right since v
is negative, while when going from α′ to α(w) in Σ′ we turn to the left since α′ is a positive
band. Therefore, this e�ect cancels out the orientation mismatch, and Σ′ coincides exactly
with the surface Σ(T1) corresponding to the tree T1. Therefore Σ(T1) is an incompressible
subsurface of Σ(T2) by Lemma 3.5. See the third row of Figure 3.12 for an illustration.

The same cancellation e�ect happens when the label of u is − and the label of v is +:
when cutting along γ2 we have an orientation mismatch which is cancelled out by the fact
that the new band is negative, and thus the orientation convention makes it turn in the
opposite direction in the plumbing rectangle between v and w. Therefore, in that case Σ(T1)
is also an incompressible subsurface of Σ(T2) thanks to Lemma 3.5. This is illustrated in the
second row of Figure 3.12.

As a corollary, contracting any path of T1 into an edge whose labels match with the labels
of the extremities of the path produces a tree T2 such that Σ(T1) ≼ Σ(T2).

Proof of Proposition 3.4. By de�nition, if T1 admits a homeomorphic embedding into T2, it
can be obtained iteratively from T2 by (i) removing a child leaf, (ii) removing a parent leaf,
(iii) reducing a label, or (iv) contracting a path while preserving the labels of the endpoints.
Since no two elements on the alphabet {+,−} are comparable, case (iii) cannot happen.
Then the cases (i), (ii) and (iv) are handled respectively by Lemma 3.6, Lemma 3.7 and
Lemma 3.8.

On the other hand, the Kruskal tree theorem, Theorem 2.5, directly yields the following
proposition.

Proposition 3.9. Hopf arborescent links are well-quasi-ordered under the link-minor rela-
tion.

Proof. Take an in�nite sequence (Ln)n∈N of Hopf arborescent links, and let (Tn)n∈N a sequence
of plane trees such that for all n ∈ N, Σ(Tn) is a Seifert surface of Ln. Then, by Theorem 2.5,
there exists i < j such that Ti admits a homeomorphic embedding into T2. Hence Li is a
link-minor of Lj.

We can deduce Theorem B as a direct corollary of Proposition 3.4 and Proposition 3.9.

Proof of Theorem B. Take an in�nite sequence (Σn)n∈N of canonical Seifert surfaces of Hopf
arborescent links. Then by Proposition 3.9, ∂Σi ↪→ ∂Σj for some i < j. By Proposition 3.4
we have Σi ≼ Σj i.e., the surface-minor order is a well-quasi-order on Hopf arborescent
surfaces.
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Figure 3.12: All cases of contraction of a 3-path to an edge preserving the labels of the
endpoints.
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Remark 3.10. The proof of Proposition 3.4 highlights that the minor relation on the set of
Hopf arborescent surfaces is more subtle and fragile than one might expect. Indeed, the cuts
involved when taking an incompressible subsurface in the proof of Lemma 3.8 inevitably merge
Hopf bands and thus one needs to be careful in order to control the number of resulting twists.
In particular, the proof does not seem to generalise to the more general classes of surfaces
obtained by plumbing bands with a bounded number of twists (even though everything works
well at the level of trees).

3.4 Decidability of the defect for Hopf arborescent links

3.4.1 Monotonicity of the genus defect

Now that we proved that link-minor is a well-quasi-order on the set of Hopf arborescent links,
we want to highlight a property that is stable for this minor relation. Recall that the genus
defect ∆g(L) of an oriented link L is the di�erence g(L)− g4(L) between its classical genus
and its 4-dimensional genus. The latter can be either in the topologically locally �at or in
the smooth category. All statements in this section (and in particular Theorem A) hold in
both categories. We reprove Lemma 6 of [10] in the form of Proposition 3.11 using the fact
that link-minor implies that the associated Seifert are surface-minors.

Proposition 3.11. The genus defect ∆g is monotone on the family of Hopf arborescent
links with respect to the link-minor relation, i.e., if L1 is a link-minor of L2, then ∆g(L1) ≤
∆g(L2).

We rely on the following lemma that highlights how the 4-genus behaves with respect to
surface-minors. It uses a cut-and-paste construction and an Euler characteristic argument.

Lemma 3.12. Let Σ be an oriented surface of S3 and Σ′ be a surface-minor of Σ. If we
write L = ∂Σ and L′ = ∂Σ′, then we have g(Σ)− g4(L) ≥ g(Σ′)− g4(L

′).

Proof. Seeing S3 as the boundary of the 4-ball B4, consider a surface S ′ in B4 such that
∂S ′ = L′ and S ′ ∩ S3 = L′. gluing the remaining pieces of Σ ∖ Σ′ to S ′ along L′ yields a
surface S in B4 such that ∂S = L, see Figure 3.13.

L

Σ

L

Σ′

L′

L

L′

S ′

L

S

Figure 3.13: Illustration of the construction of Σ, Σ′, L′, S, and S ′. Red surfaces are in
S3 while blue one are considered to be in B4.
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By the de�nition of g4(L), we have g4(L) ≤ g(S), and thus g(Σ)− g4(L) ≥ g(Σ)− g(S).
Furthermore, the genus of S is given by g(S) = g(Σ)− g(Σ′) + g(S ′). Thus one has g(Σ)−
g4(L) ≥ g(Σ′)− g(S ′). Now if we assume S ′ to minimise the 4-genus over surfaces bounded
by L′, we conclude: g(Σ)− g4(L) ≥ g(Σ′)− g4(L

′).

As Hopf arborescent surfaces are of minimal genus for Hopf arborescent links, Lemma 3.12
can be used to prove Proposition 3.11.

Proof of Proposition 3.11. Let L and L′ be two Hopf arborescent links such that L′ is a link-
minor of L. Consider Σ and Σ′ the corresponding canonical Seifert surfaces. Since Hopf
arborescent links are �bred, Σ is a Seifert surface of L of minimal genus (see Theorem 3.1),
i.e. g(L) = g(Σ) and similarly, g(Σ′) = g(L′). By Proposition 3.4 one has Σ ≼ Σ′. Hence, by
Lemma 3.12, one gets ∆g(L) ≥ ∆g(L

′).

3.4.2 Proof of Theorem A

We �rst show that the link-minor relation can be decided using the decidability of link
equivalence. For knots, equivalence can be tested as a combination of an algorithm that allows
one to decide whether two 3-manifolds with boundary are homeomorphic [75, 91] and the
Gordon-Luecke Theorem [49] that states that two knots are equivalent if their complements,
which are 3-manifolds with boundaries, are equivalent. In the case of links, we additionally
need to keep track of a longitude of each torus boundary component in the complement of
the link. We refer to the survey of Lackenby [79, Section 2] for a summary of the techniques
that allow us to prove the following theorem:

Theorem 3.13 (Link equivalence). Given two links L1 and L2, the problem of testing
whether L1 is ambient isotopic to L2 is decidable.

Given a Hopf arborescent link L, denote by T (L) the set of plane trees T whose associated
Hopf arborescent surface Σ(T ) has L as oriented boundary. As a corollary, we obtain:

Lemma 3.14. Given a Hopf arborescent link L, the set T (L) is computable.

Proof. For increasing k ∈ N, we enumerate all plane trees Ti with k vertices labelled by
{−,+} and store the trees Ti such that ∂Σ(Ti) is isotopic to L, where we test isotopy using
Theorem 3.13. If we �nd a k for which such a tree exists, we �nish the enumeration for this
value and return the stored trees. Indeed, plumbing n Hopf bands produces a surface with
Betti number n. By Theorem 3.1, all the trees Ti such that ∂Σ(Ti) = L produce surfaces
Σ(Ti) with the same genus, hence have the same number of vertices. As the entry is a Hopf
arborescent link, there exists a tree T such that ∂Σ(T ) = L. So the algorithm terminates.

Alternatively, if one wants some control over the complexity of that algorithm, one can
avoid blindly testing for increasing k by �rst computing the genus of the link [54, 91], or just
computing an upper bound to it using, e.g., Seifert's algorithm, and then enumerating only
the trees that produce surfaces up to that genus. From Lemma 3.14, we obtain:

Lemma 3.15. Given two Hopf arborescent links L1 and L2, testing if L1 is a link-minor
of L2 is decidable.
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Proof. Using Lemma 3.14, we compute T (L1) and T (L2). The trees in T (L1) (resp. T (L2))
all have the same number k1 (resp. k2) of vertices. Then we exhaustively try out every
possible path contraction to an edge and iterated leaf deletion on trees of T (L2) such that
the result is a tree with k1 vertices and test whether it is equal to a tree of T (L1). If such
a test succeeds, we output yes, otherwise we return no. There is a �nite number of trees in
both T (L1) and T (L2) and a �nite number of trees with k1 vertices that homeomorphically
embed into a tree of T (L2). Hence that algorithm eventually terminates. Its correctness
follows directly from the de�nition of link-minor.

Finally we prove Theorem A by using the stability of the genus-defect by link-minor, the
previous algorithms, and the well-quasi-order properties.

Proof of Theorem A. By Proposition 3.9, the order de�ned by link-minors is a well-quasi-
order on the set of Hopf arborescent links. Hence, by Lemma 2.4, the set of Hopf arborescent
links Hk that have defect at most k is characterised by a �nite family Fk of forbidden minors.
It follows, by Proposition 3.11 that ∆g(L) ≤ k if and only if for all f in Fk, f is not a link-
minor of L. Using Lemma 3.15 we test for each f ∈ Fk if f is a link-minor of L. If such a
test succeeds, output no; otherwise, the input link has ∆g(L) ≤ k.

As said in the introduction, our proof is not constructive as it relies at its core on the
existence of a set of forbidden minors for having defect at most k. This set of forbidden
minors is not explicit and hard-coded in the algorithm. Furthermore, the sets of excluded
minors will be di�erent for the two di�erent notions of defect (smooth and locally �at). It is
likely that computing them is a topological challenge requiring arguments of di�erent nature.

Theorem B provides the existence of a set of forbidden minors for having defect at most
k but for a di�erent and stronger de�nition of minors on links that relies only on the surface-
minor relation on the Seifert surface and not the trees. However, deciding this relation, even
by a brute force argument, seems challenging: in addition to the fact that no algorithm seems
to be known for testing isotopy of surfaces, one would also need to control the complexity of
the cutting arcs. Even with positive Hopf arborescent links only, this seems delicate [93].

3.5 Examples: Hopf arborescent links with non-trivial

defect

It is not clear a priori that the topological and/or smooth defects of Hopf arborescent links are
nonzero. For instance, our building block, the Hopf band, has both defects equal to 0 since it
bounds an annulus in S3; which has genus 0. Furthermore, as mentioned in the introduction,
when Hopf arborescent links are only made with positive Hopf bands, they belong to a class
of links called positive links. This implies that they are strongly quasi-positive [123], and this
implies in turn that their smooth 4-genus equals their 3-genus [122]. So for this class of links,
the smooth defect is always zero. In contrast, in this section, we provide an example of a
Hopf arborescent knot for which both the topological and the smooth defects are nonzero,
and an argument explaining how to use this knot to provide examples with arbitrarily large
defects.
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Example 1. A Hopf arborescent link with non trivial topological defect is given by Baader,
Feller, Lewark and Liechti [10, Example 4]. It consists in plumbing 6 positive Hopf bands in
a latin cross-like pattern. Since it is positive, its smooth defect is zero. However, one can
�nd a torus sub-surface of SX such that the restricted Alexander polynomial vanishes. By
Freedman's Disc Theorem [43], this implies that one can remove this subsurface and glue
along its boundary a locally �at disc in the 4-ball. This means that the topological defect is
at least 1. We refer to the article [10] for more details.

Example 2. By the aforementioned result of Rudolph, in order to obtain a Hopf arborescent
link with nonzero smooth defect, we need to use both positive and negative Hopf bands. Here
is such an example: the Hopf arborescent link obtained from the tree pictured in Figure 3.14
is in fact a knot, named 810 in the Rolfsen table [120]. One can readily check from knot
censuses (for example, from the Knot Atlas [1]) the smooth and topological genera of this
knot, and we have ∆smooth

g (810) = ∆top
g (810) = 2. For completeness, we provide here another

argument to explain why the defects are nonzero.

+

+

+

−
−

+

=

=

Figure 3.14: The Hopf arborescent knot 810 (from the Rolfsen table).

The genus-minimising surface is the Hopf arborescent surface pictured in Figure 3.15,
whose genus is 3, and with 1 boundary component. The red curve on the left of Figure 3.15
is the core of an embedded annulus, and its two boundaries are unlinked. Replacing this
annulus by two discs glued on its two boundary components yields an immersed surface with
genus 1 less, still bounded by K810 . The singularities of this immersion are of a particular
type called ribbon singularities [120, p.225] (right side of Figure 3.15). Such singularities
can be resolved in the 4-ball, and thus this implies that the Hopf arborescent surface can be
pushed into a smoothly embedded surface in the 4-ball so that its smooth defect is at least 1.
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Furthermore, for any link L, we have that gsmooth
4 (L) ≥ gtop4 (L) so that its topological defect

is also at least 1.

−2

+2

+2

−2

Figure 3.15: Left: A simple red curve on the surface associated to Σ(810). The in-
tersection number in green show that the boundaries of the corresponding annulus are
unlinked. Right: A ribbon intersection.

One can also check in the censuses that these two examples are hyperbolic.

Arbitrarily large defect. We can use the previous examples to create Hopf arborescent
links with arbitrarily large (smooth or topological) defects. The following proposition proves
that the defects coming from tree patterns add up if they are isolated enough.

Proposition 3.16. Let L be an arborescent link associated to a plane tree T . Let T1, . . . , Tn
be disjoint subtrees of T that are pairwise at distance at least two within T . Denote Li =

∂(Σ(Ti)), then
∑

1≤i≤n

∆g(Li) ≤ ∆g(L).

Proof. For each i, identifying the Hopf bands of the vertices of Ti within Σ(T ) provides a
family of embeddings of the Σ(Ti). These embeddings are disjoint by the distance assumption.

We can now repeat the proof of Lemma 3.12 and Proposition 3.11 with a family of links
to obtain the desired inequality. Since the Σ(Ti) are disjoint subsurfaces of Σ(L),

⋃
Σ(Ti) is

a surface-minor of Σ(L). As in the proof of Lemma 3.12, we de�ne for each Li, a surface S ′
i

in B4 that has Li as its boundary. gluing each S ′
i to the pieces of Σ(T ) ∖

⋃
Σ(Ti) along its

associated Li yields a surface S in B4 such that ∂S = L.
Now we have g(S) = g(Σ(T )) − ∑

i g(Σ(Ti)) +
∑

i g(S
′
i). It follows, by de�nition of g4

that g(Σ(T ))− g4(L) ≥ g(Σ(T ))− g(S) =
∑

i g(Σ(Ti))− g(S ′
i). By Theorem 3.1, and taking

each S ′
i to be of minimal genus, ∆g(L) = g(L)− g4(L) ≥

∑
i g(Li)− g4(Li) =

∑
i ∆g(Li).
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Consider a Hopf arborescent link L associated to some tree T such that L has non zero
defect. By identifying the roots of n copies of T with the leaves of a n-star graph (one vertex
of degree n, n vertices of degree 1), we create a tree T ′ such that the link L′ = ∂Σ(T ′) has
defect at least n∆g(L) by Proposition 3.16, therefore obtaining links with arbitrarily large
topological and smooth defects.



Chapter 4

Tree-like decompositions of knots and

spatial graphs

In this chapter, we initiate a thorough investigation of tree decompositions of
knot diagrams, or more generally diagrams of spatial graphs, using ideas from
structural graph theory. We de�ne an obstruction on spatial embeddings that
forbids low treewidth diagrams, and we prove that it is optimal with respect
to a related width invariant that we develop. We then show the existence of
this obstruction for knots of high compression-representativity, which include,
for example, torus knots, providing a new and self-contained proof that those
do not admit diagrams of low treewidth.

The results of this chapter were obtained with Arnaud de Mesmay and appeared in the
Proceedings of the 39th International Symposium on Computational Geometry [A]. Addi-
tional remarks on this work are presented in Section 4.6.

4.1 Introduction

In recent years, many attempts have been made to attack seemingly hard problems, like the
unknot recognition problem (see last part of Section 2.1.3), via the route of parameterized
algorithms. In particular, recall that the treewidth of a graph is a parameter quantifying
how close a graph is to a tree, and thus algorithmic problems on graphs of low treewidth can
often be solved very e�ciently using dynamic programming techniques on the underlying
tree structure of the instance. The concept of branchwidth, which we will also use, is
a somewhat equivalent width parameter on graphs and is always within a constant factor
of treewidth [116]. It o�ers a similar insight as treewidth on graphs from a computational
perspective, in addition to features that will interest us.

83
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When one is provided with a knot diagram of low treewidth or branchwidth, one can
therefore use dynamic programming techniques to solve seemingly hard problems very ef-
�ciently. While this approach has not yet been successful for unknot recognition beyond
treewidth 2 [15], it has proved e�ective for the computation of many knot invariants, includ-
ing: Jones and Kau�man polynomials [86] (which are known to be #P -hard to compute in
general [66]), HOMFLY-PT polynomials [19], and quantum invariants [87, 23]. Since any
knot admits in�nitely many diagrams, these algorithms naturally lead to the following ques-
tion raised by Burton [22, p.2694], and Makowsky and Mariño [86, p.755]: do all knots admit
diagrams of constant treewidth, or conversely, does there exist a family of knots for which
all the diagrams have treewidth going to in�nity. This question was answered recently by
de Mesmay, Purcell, Schleimer, and Sedgwick [28] who proved that, among other examples,
torus knots Tp,q are such a family. The proof relies at its core on an intricate result of Hayashi
and Shimokawa [57] on thin position of multiple Heegaard splittings.

Figure 4.1: Diagrams of two trivial knots on the left, a bowline knot and a knotted
spatial graph.

Our results. The main purpose of this work is to provide new techniques to characterise
which knots, or more generally which spatial graphs (see for example Figure 4.1 for a
knotted spatial graph), do not admit diagrams of low treewidth. Our starting point is similar
to the one in [28]: we �rst observe that if a knot or a spatial graph admits a diagram of low
treewidth, then there is a way to sweep R3 using spheres arranged in a tree-like fashion which
intersect the knot a small number of times (Proposition 4.3). This corresponds roughly to a
map f : R3 → T where T is a trivalent tree, where the preimage of each point interior to an
edge is a sphere with a small number of intersections with the knot (we refer to Section 4.2
for the precise technical de�nitions of all the concepts discussed in this introduction). We call
this a sphere decomposition1, and the resulting measure, which is roughly the maximal
number of intersections with the knot, is called the spherewidth of the knot.

Thus, in order to lower bound the treewidth of all the diagrams of a knot, it is enough to
lower bound its spherewidth. We provide a systematic technique to do so using a perspective
taken from structural graph theory. In the proof of the celebrated Graph Minor Theorem of
Robertson and Seymour [118], handling families of graphs with bounded treewidth turns out

1Our sphere decompositions are di�erent from the ones in [28] but functionally equivalent for knots.
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not to be too hard [115], and in contrast, a large part is devoted to analysing the structure
shared by graphs of large treewidth. There, a fundamental contribution is the concept of
tangle2. We refer to Diestel [33] or Grohe [50] for nice introductions to tangles and their
applications. Informally, a tangle of order k in a graph G is a choice, for each separation
of size at most k, of a �big side� of that separation, where the highly connected part of
the graph lies. In addition, there are some compatibility properties: in particular, no three
�small sides� should cover the whole graph. Such a tangle turns out to be exactly the structure
dual to branchwidth, in the sense that, for any graph G, the maximal possible order of a
tangle is exactly equal to its branchwidth [116]. We develop a similar concept dual to sphere
decompositions, which we call a bubble tangle. Informally, a bubble tangle of order k for
a knot or spatial graph K is a map that, for each sphere intersecting K at most k times,
chooses a �big side� indicating where the complicated part of K lies. There are again some
compatibility conditions which add topological information to the collection of �small sides�.
Then our �rst result is the following.

Theorem C. For any knot or spatial graph K, the maximum order of a bubble tangle for K
is equal to the spherewidth of K.

This theorem provides a convenient and systematic pathway to prove lower bounds on
the spherewidth, and thus on the treewidth of all possible diagrams: it su�ces to prove the
existence of a bubble tangle of high order. However, making choices for the uncountable
family of spheres with a small number of intersections with K, and then verifying the needed
compatibility conditions is very unwieldy. Our second contribution is to provide a way to
de�ne such a bubble tangle in the case of knots (or spatial graphs) which are embedded on
some surface Σ in R3. Given a surface Σ in R3, a compression disc is a disc properly
embedded in R3 ∖ Σ whose boundary is a non-contractible curve on Σ. The compression-
representativity of an embedding of a knot or spatial graph K on a surface Σ in R3 is
the smallest number of intersections between K and a cycle on Σ that bounds a compression
disc (this was originally de�ned by Ozawa [103] under the name of representativity). The
compression-representativity of a knot or spatial graph is the supremum of that quantity
over all embeddings on surfaces . Our second theorem is the following.

Theorem D. For any knot or spatial graph K embedded on a surface Σ in R3, there exists
a bubble tangle of order 2/3 of the compression-representativity of the embedding. Therefore,
for any knot or spatial graph K, there exists a bubble tangle of order 2/3 of the compression-
representativity of K.

Combining together Theorems C and D with Proposition 4.3 provides a large class of
knots of high spherewidth, and our tools are versatile enough to apply to spatial graphs, while
previous ones did not. In particular, observing that torus knots Tp,q have high compression-
representativity, we obtain the following corollary, which improves the lower bound obtained
by [28], without relying on deep knot-theoretical tools.

Corollary 4.1. A torus knot T (p, q) has spherewidth at least 2/3min(p, q), and thus any
diagram of T (p, q) has treewidth at least 1/3min(p, q).

2It turns out that the word tangle holds a completely di�erent meaning in knot theory, and, to avoid
confusion, in this thesis we will always use it with the graph theory meaning.
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Related work and proof techniques. While there have been some recent works aiming
at building bridges between combinatorial width parameters and topological quantities (for
example, the aforementioned [28], but also [60, 61, 88] for related problems in 3-manifold
theory), the main contribution in this chapter is that we dive deeper into the structural
graph theory perspective via the concept of a tangle. The latter has now proved to be a
fundamental tool in graph theory and beyond (see for example Diestel [30, Preface to the
5th edition]).

The duality theorem of Robertson and Seymour between branchwidth and tangles in [116]
has been generalised many times since its inception. For example, in order to encompass
other notions of decompositions and their obstructions [6, 85], to apply more generally to
matroids [47], and to the wide-ranging setting of abstract separations systems [31, 32]. The
key di�erence in our work, and why it does not �t into these generalisations, is that our
notions of sphere decomposition and bubble tangles inherently feature the topological con-
straint of working with 2-spheres. This is a crucial constraint, as it would be easy to sweep
any knot with width at most 2 if one were allowed to use arbitrary surfaces during the sweep-
ing process. It should also be noted that in planar graphs, it was shown by Seymour and
Thomas [133] that the separations involved in an optimal branch decomposition can always
be assumed to take the form of 1-spheres, i.e., Jordan curves. This property led to the cel-
ebrated ratcatcher algorithm to compute the branchwidth of planar graphs in polynomial
time [133] as well as to sphere-cut decompositions and their algorithmic applications (see
for example [34]). Our sphere decompositions are the generalisation one dimension higher of
these sphere-cut decompositions, and Theorem C identi�es bubble tangles as a correct no-
tion of dual obstruction for those. We believe that these notions could be of further interest
beyond knots: in the study of graphs embedded in R3 with some topological constraints, e.g.,
linkless graphs [125].

The representativity (also called facewidth) of a graph embedded on a surface S is
the smallest number of intersections of a non-contractible curve with that graph. Theorem D
will not come as a surprise for readers accustomed to graph minor theory, as Robertson
and Seymour proved a very similar-looking theorem in Graph Minors XI [117, Theorem 4.1].
They showed by exhibiting a tangle that the branchwidth of a graph embedded on a surface is
lower bounded by its representativity. The key di�erence is that our notion of compression-
representativity only takes into account the length of cycles bounding compression discs,
instead of all the non-contractible cycles. Here again, this topological distinction is crucial to
give a meaningful concept for knots, as for example the graph-theoretical representativity of
a torus knot is zero. Due to this di�erence, the proof technique of Robertson and Seymour
does not readily apply to prove Theorem D; instead we have to rely on more topological
arguments.

From the knot theory side, there is a long history in the study of the �best� way to
sweep a knot while trying to minimise the number of intersections in this sweepout. One
of the oldest knot invariants, the bridge number, can be seen through this lens (see for
example [131]). A key concept in modern knot theory, introduced by Gabai in his proof of
the Property R conjecture [46], is the notion of thin position that quanti�es more precisely
the best way to place a knot to minimise its width. It is at the core of many advances in
modern knot theory (see, for example, Scharlemann [127]). Recent developments in thin
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position have highlighted that in order to obtain the best topological properties, it can be
helpful to sweep the knot in a tree-like fashion compared to the classical linear one. This
approach leads to de�nitions bearing close similarities to our sphere decompositions (this is
one of the ideas behind generalised Heegaard splittings [129, 128], see also [57, 58, 135]).
The concept of compression-representativity of a knot or a spatial graph �nds its roots
in the works of Ozawa [103], and Blair and Ozawa [13] who de�ned it under the simple
name of representativity, taking inspiration from graph theory. They proved that it provides
a lower bound on the bridge number and on more general linear width quantities. Our
Theorem D strengthens their results by showing that it also lower bounds the width of tree-
like decompositions. Furthermore, while speci�c tools have been developed to lower bound
various notions of width of knots or 3-manifolds, we are not aware of duality theorems like
our Theorem C. It shows that our bubble tangles constitute an obstruction that is, in a
precise sense, the optimal tool for the purpose of lower bounding spherewidth.

Finally, an important inspiration for our proof of Theorem D comes from a seemingly
unrelated breakthrough of Pardon [105], who solved a famous open problem of Gromov [51]
by proving the existence of knots with arbitrarily high distortion. The distortion for two
points on an embedded curve in R3 is the ratio between the intrinsic and Euclidean distance
between the points. The distortion of the entire curve is the supremum over all pairs of
points. The distortion of a knot is the minimal distortion over all embeddings of the knot.
While this metric quantity seems to have nothing to do with tree decompositions, it turns
out that the technique developed by Pardon can be reinterpreted in our framework. With our
terminology, his proof amounts to �rst lower bounding the distortion by a constant factor
of the spherewidth, and then de�ning a bubble tangle for knots of high representativity.
The lower bound is nicely explained by Gromov and Guth [52, Lemma 4.2], where the
simplicial map is similar to our sphere decompositions, up to a constant factor. Then our
proof of Theorem D is inspired by the second part of Pardon's argument, with a quantitative
strengthening to obtain the 2/3 factor, whereas his argument would only yield 1/2.

Organisation of this chapter. After providing background and de�ning the speci�cs
for this chapter in Section 4.2, we prove Theorem C in Section 4.3, and Theorem D in
Section 4.4. We cover some examples in Section 4.5. Section 4.6 contains an additional result
that will be crucial in Chapter 5 and remarks about computational aspects of compression-
representativity.

4.2 Speci�c preliminaries

Low-dimensional topology. We denote by C(A) the connected components of a subset
A of S3, and thus by |C(A)| its number of connected components. Recall that we work in the
PL setting. This allows us to avoid pathologies such as wild knots or pathological surfaces
like the Alexander horned sphere [5]. An embedding of a compact topological space X into
another one Y is said to be proper if it maps the boundary ∂X within the boundary ∂Y .
A 3-dimensional version of the Schoen�ies theorem guarantees that for any PL 2-sphere S
embedded in S3, both components of S3∖S are balls (see for example [12, Theorem XIV.1]).
Again, all these objects are considered equivalent when they are ambient isotopic. Knots and
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links are a special instance of spatial graphs, and henceforth we will mostly focus on spatial
graphs, generally denoted by the letter G. For technical reasons, it is convenient to thicken
our embedded graphs as follows. A thickened embedding φ of a graphG is an embedding of
G in S3 where each vertex is thickened to a small ball, two balls are connected by a polygonal
edge if and only if they are adjacent in the graph G, and pairs of edges are disjoint. We
emphasise that we do not thicken edges, which might be considered non-standard. We will
also work with graphs embedded on surfaces which are themselves embedded in S3: such
embeddings will also always be thickened, that is, vertices on the surface are thickened into
small discs. From now on, all the graph embeddings will be thickened, and thus to ease
notations we will omit the word thickened.

As mentioned in this introduction, for Σ a surface embedded in S3, a compression disc
is a properly embedded disc D in S3 ∖ Σ such that the boundary ∂D is a non-contractible
curve on Σ. A compressible curve γ of Σ is the boundary of a compressing disc of Σ (the
two compressible of the torus are pictured in Figure 4.2). For a spatial graph G embedded
on a surface Σ in S3, the compression-representativity of G on Σ, written c-rep(G,Σ) is
min {|C(α ∩G)| | α compressible curve of Σ}. We count connected components to correctly
handle thickened vertices. The compression-representativity c-rep(G) of G is the supremum
of c-rep(G,Σ) over all nested embeddings G ↪→ Σ ↪→ S3.

Figure 4.2: Two compression discs on the torus, whose boundaries are the two compress-
ible curves of the torus.

In order to de�ne spherewidth and bubble tangles, we require a precise control of the
event when two spheres merge together to yield a third one, which is mainly encapsulated in
the concept of double bubble. A double bubble is a triplet of closed discs (D1, D2, D3) in
S3, disjoint except on their boundaries, that they share: D1 ∩ D2 = D1 ∩ D3 = D2 ∩ D3 =
D1 ∩ D2 ∩ D3 = ∂D1 = ∂D2 = ∂D3, see Figure 4.3. Such a double bubble de�nes three
spheres, which, by the PL Schoen�ies theorem, bound three balls.

Two surfaces (resp. a knot and a surface) embedded in S3 are transverse if they intersect
in a �nite number of connected components, where the intersection is locally homeomorphic
to the intersection of two orthogonal planes (resp. to the intersection of a plane and an
orthogonal line). Likewise, we say that a surface is transverse to a ball if it is transverse to
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its boundary. A surface is transverse to a graph if it is transverse to all the thickened vertices
and edges it intersects. A double bubble is transverse to a graph or a surface if each of its
three spheres is and if the vertices of the graph do not intersect the spheres on their shared
circle ∂Di. Intersections are tangent when they are not transverse, and a sphere S is said
�nitely tangent to a graph G embedded in S3 if they do not intersect transversely but the
number of intersections |E(G) ∩ S| is still �nite.

Figure 4.3: A double bubble: two spheres that intersect in a single disc.

4.2.1 Spherewidth

We now move on to the de�nition of sphere decompositions, which are the main way that we
use to sweep S3, and thus knots and spatial graphs embedded within it using spheres.

De�nition 4.2 (Sphere decomposition). Let G be a graph embedded in S3. A sphere de-

composition of G is a continuous map f : S3 → T where T is a trivalent tree (vertices are
either of degree 3 or 1) with at least one edge:

� For all x ∈ L(T ), f−1(x) is a point disjoint from G.

� For all x ∈ V (T )∖ L(T ), f−1(x) is a double bubble transverse to G.

� For all x interior to an edge, f−1(x) is a sphere transverse or �nitely tangent to G.

The weight of a sphere S (with respect to G) is the number of connected components
in its intersection with G. The width of a sphere decomposition f is the supremum of the
weight of f−1(x) over all points x interior to edges of the tree T . The spherewidth of the
graph G, denoted by sw(G), is the in�mum, over all sphere decompositions f , of the width of
f : sw(G) = infS3 7→T supx∈e̊∈E(T ) |C(f−1(x)∩G)|. Therefore, a sphere decomposition is a way
to continuously sweep S3 using spheres, which will occasionally merge or split in the form of
double bubbles. The spherewidth is a measure of how well we can sweep a graph G using
sphere decompositions. This is similar to the level sets given by a Morse function, but note
that our double-bubble singularities are not of Morse type, and those are key to the proof of
Theorem C. Figure 4.4 pictures a 2D representation of a sphere decomposition: some spheres
of the sweepout, each one being preimages of an inner point in an edge, are pictured by grey
circles (represented as rectangles here), and double bubbles are represented by rectangular θ
shaped subsets of the plane.

The point of using thickened embeddings instead of usual ones is that this allows disjoint
spheres of a sphere decomposition to intersect the same vertex of a graph embedding. This
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Sphere

decomposition

Figure 4.4: A representation in the plane of sphere decomposition of width 4 of a knot.

is motivated by the following proposition, which provides a bridge between sphere decompo-
sitions and tree decompositions of diagrams of knots and spatial graphs.

Proposition 4.3. Let G be a knot or a graph embedded in S3, and D be a diagram of G.
Then the spherewidth of G is at most twice the treewidth of D.

The proof is very similar to that of Lemma 3.4 in [28].

Proof of Proposition 4.3. If D is a tree, then the spherewidth of G is one, and the proposition
is trivial. So we assume henceforth that G contains at least one cycle. We will refrain from
providing a precise de�nition of treewidth (we refer to Diestel [30]) as we will rely on a variant
with more structure, more adapted to planar graphs: sphere-cut decompositions [34], which
we �rst introduce. Given a planar graph D, a sphere-cut decomposition is a trivalent
tree T , whose leaves are in bijection with the edges of D, and a family of Jordan curves γe
parametrised by the edges of T . An edge e of T partitions the leaves of T and thus the
edges of D into two subsets Ee

1 and Ee
2. Each Jordan curve γe is required to intersect D

only at its vertices (such a curve is often called a noose), and thus partitions the edges of
D into two subsets: we require that this partition matches the partition Ee

1 and Ee
2. The

weight of a Jordan curve w(γe) is the number of vertices that it intersects. The width
of a sphere-cut decomposition w(T, (γe)) is the maximum weight w(γe) over all the edges
of T , and the sphere-cut width is the minimum width over all sphere-cut decompositions.
Given a graph D that is not a tree, if we denote by k its treewidth, it is known that the
sphere-cut width of D is at most k. This follows from the fact that the branchwidth of
D is at most its treewidth [116] and the results of Seymour and Thomas on bond carving
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decompositions [133] (see for example [65, Lemma 2.2] for the exact statement that we use
connecting branchwidth and sphere-cut width).

We now work with a sphere-cut decomposition (T, (γe)) achieving the optimal width.
There are two types of vertices in D: those corresponding to vertices of G and those cor-
responding to crossings of G in the projection. Since G is a thickened embedding in S3, it
makes sense to also thicken D, i.e., we thicken a bit the vertices of the planar graph D so that
they are small discs, and so that the Jordan curves γe intersect the interior of these discs.
Then, by perturbing them a little and, if necessary, removing bigons, we can assume that the
Jordan curves are all pairwise disjoint while still intersecting the graph D only at the vertex
discs. Now, since D is a planar projection of G, each Jordan curve can be lifted to a sphere
in S3 by capping it o� with one disc above and one disc below the projection. The resulting
spheres Se are pairwise disjoint and intersect the graph G in two di�erent ways: whenever
γe traverses one of the vertices of G, Se intersects the corresponding thickened vertex; and
whenever γe traverses one of the crossings of G, Se intersects transversely one or two of the
edges of G (see Figure 4.5).

γe

D

γe
G

Se

γe

D

γe
G

Se

Figure 4.5: The two cases for the intersection between γe and D and their lift in S3.

Therefore, the weight of a sphere Se is upper bounded by ce1+2ce2, where c
e
1 is the number

of vertices of G traversed by γe, and ce2 is the number of crossings of G traversed by γe.
The spheres Se are used as the backbone of a sphere decomposition, there just remains to
interpolate between them:

� A sphere Se for e adjacent to a leaf of T encloses exactly one edge of D, therefore it
bounds a G-trivial ball. It is straightforward to de�ne a continuous family of nested
spheres of width 2 and converging to a point disjoint from G, which together sweep
such a G-trivial ball.

� A vertex v of T is adjacent to three edges, corresponding to three spheres S1, S2 and
S3. The space inbetween these three spheres is homeomorphic to a solid pair of pants
P , i.e., S3 with three balls removed. We look at P ∩G and observe that since every edge
of D is in bijection with one of the leaves of T , it is enclosed by a ball in the previous
item and thus does not appear in P ∩G. Therefore, the only components that we see
in P ∩G are preimages under the projection map of thickened vertices or crossings. By
construction, both these preimages are topologically trivial (they do not involve any
knotting). The thickened vertices connect one, two, or the three boundaries of P . So
we can de�ne a double bubble DB in the middle of P and transverse to G, and three
families of nested spheres interpolating between the three spheres of DB and S1, S2,
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and S3, with the following property: each of these interpolating spheres intersects at
most twice each thickened vertex connecting the three boundaries, and at most once
any of the other preimages (see Figure 4.6).

G
P

S1 S2 S3

DB

Figure 4.6: De�nition of a double bubble DB within a solid pant P .

Each sphere involved in the previous two items has weight at most 2ce1 + 2ce2 for some
Jordan curve γe, and thus the width of the sphere decomposition is upper bounded by twice
the sphere-cut width. We obtain a sphere decomposition of weight at most twice the treewidth
of D, which concludes the proof.

4.2.2 Bubble tangle

Bubble tangles are our second main concept in this chapter. They will constitute an ob-
struction to spherewidth, by designating, for each sphere in S3 not intersecting the graph
too many times, the side of the sphere that is easy to sweep. We �rst observe that some
balls have to be easy to sweep: intuitively, this will be the case of any unknotted segment
or empty ball (see Figure 4.7). Let G be a graph embedded in S3. A closed ball B in S3 is
said to be G-trivial if its boundary is transverse to G and one of the following holds (where
B(0, 1) is the unit ball of R3):

� B ∩G = ∅.

� B ∖G is homeomorphic to B(0, 1)∖ [−1, 1]× {(0, 0)} ⊂ R3.

� B ∖G is homeomorphic to B(0, 1)∖ [−1, 0]× {(0, 0)} ⊂ R3.

/

Figure 4.7: Representation of a G-trivial ball and a non G-trivial ball.
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We can now introduce bubble tangles.
De�nition 4.4. Let G be an embedding of a graph in S3 and n ∈ N. A bubble tangle T
of order n ≥ 2, is a collection of closed balls in S3 such that:

(T1) For every closed ball B in T , |C(∂B ∩G)| < n.

(T2) For every sphere S in S3 transverse to G, if |C(S ∩G)| < n then exactly one of the two
closed balls B̄1 is in T or B̄2 is in T , where S3 ∖ S = {B1, B2}.

(T3) For every triple of balls B1, B2 and B3 induced by a double bubble transverse to G,
{B1, B2, B3} ̸⊂ T .

(T4) For every closed ball B in S3, if B is G-trivial and |C(∂B ∩G)| < n, then B ∈ T .

For every transverse sphere S such that |C(S ∩ G)| < n, a bubble tangle chooses one of
the two balls having S as the boundary. We think of the ball in T as being a �small side�,
since (T4) stipulates that balls containing trivial parts of G are in T , while the other one
is the �big side�. Then the key property (T3) enforces that no three small sides forming a
double bubble should cover the entire S3 ((T2) and (T3) are illustrated in Figure 4.8).

.

.

.

≤ n ∈ T
or

∈ T

Figure 4.8: Illustration of (T2) (top) and (T3) (bottom), small sides are indicated by
arrows pointing outward.

Remark 4.5. Tangles in graph theory are often endowed with an additional axiom, speci-
fying that small sides should be stable under inclusion (see e.g., [47, Axiom (T3A)]). Our
bubble tangles are weaker in the sense that we do not enforce this axiom, but still strong
enough to guarantee duality (Theorem C) and the connection to compression-representativity
(Theorem D). Whether such an axiom can be additionally enforced in our de�nition of bubble
tangle while preserving these properties is left as an open problem. As explained by a discus-
sion of Section 4.6 and Proposition 4.20, this property is satis�ed by bubble tangles provided
by Theorem D.
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4.3 Obstruction and duality

In this section, we prove Theorem C: given a graph G embedded in S3, the highest possible
order of a bubble tangle is equal to the spherewidth of G. In the following, G is an embedding
of a graph in S3 and the order of all bubble tangles that we consider is at least 3, the
theorem being trivial otherwise. The proof is split into two inequalities: Proposition 4.6 and
Proposition 4.9 which together immediately imply Theorem C.

4.3.1 Bubble tangles as obstruction.

We �rst show that a bubble tangle of order k and a sphere decomposition of width less than
k cannot both exist at the same time.

Proposition 4.6. Let G be an embedding of a graph in S3. If G admits a bubble tangle T
of order k, then sw(G) ≥ k.

The proof of this proposition is similar to its graph-theoretical counterparts showing that
tangles are an obstruction to branchwidth (see, e.g., [116]). The main di�erence with these
proofs lies in the continuous aspects of our sphere decomposition, which we control using
Lemmas 4.7 and 4.8.

Let S and S ′ be two disjoint spheres in S3. Then S3 ∖ (S ∪ S ′) has three connected
components: two balls and a space I homeomorphic to S2 × [0, 1]. The spheres S and S ′ are
said to be braid-equivalent if (I∪S∪S ′)∖G is homeomorphic to Sk× [0, 1] where Sk is the
2-sphere with k holes (see Figure 4.9). The intuition behind this de�nition is that it means
that G forms a braid between S and S ′. The following lemma explains how braid-equivalent
spheres interact with a bubble tangle.

Figure 4.9: The three innermost spheres are braid-equivalent, not the fourth one.

Lemma 4.7. Let T be a bubble tangle and S, S ′ be two braid-equivalent spheres. Let us write
S3 ∖ S = {B1, B2} and S3 ∖ S ′ = {B′

1, B
′
2} such that B1 ⊂ B′

1. If B1 ∈ T then B′
1 ∈ T .

Proof of Lemma 4.7. The idea of the proof is to show that if S and S ′ are braid-equivalent,
we can cover the space I = B′

1 ∖ B̊1 by G-trivial balls in order to "grow" S into S ′, which
will yield the result by invoking (T3) inductively. Notice that braid equivalence implies that
S and S ′ are transverse to G, and that |C(S ∩G)| = |C(S ′∩G)| = k where k is less than the
order of T as S ∈ T ; hence, by (T2) either B′

1 ∈ T or B′
2 ∈ T . Let h : Sk × [0, 1] → I ∖ G



4.3. Obstruction and duality 95

be a homeomorphism induced by the braid equivalence where Sk is the 2-sphere with k holes
t1, . . . , tk, and let us work on Sk × [0, 1].

Let D1, . . . , Dk be k disjoint closed discs on S2, each one covering a hole of Sk: for all
i ∈ J1, kK, D̊i ∖ ti is an open annulus. For i ∈ J1, kK notice that h((Di ∖ ti) × [0, 1]) is
homeomorphic to B(0, 1)∖ [−1, 1]× {(0, 0)} (see Figure 4.10).

t1

t2

t3
t4

t5

t6

D4

D5

D1

D2

D3

D6

Figure 4.10: discs D1, . . . , Dk over holes of S2.

We �rst extend h−1 to a continuous function φ : I → S2× [0, 1] such that φ(Di× [0, 1]) is
a closed ball of S3 that is G-trivial, and belongs to T by (T4). It su�ces to extend h−1 on G.
Notice that G is a union of balls and edges with endpoints on these balls. On I, the closure
of each h(Sk × {x}) for x ∈ [0, 1] naturally extends h−1 to ∂G ∩ I by continuity: send the
boundary components of h(Sk × {x}) to {ti} × {x} with φ when the boundary component
extends the image of a neighbourhood of {ti} × {x}. All that remains is to deal with the
balls of the thickened embedding. Let B be a vertex ball of G such that I ∩B ̸= ∅ and let X
be one of the connected components of B ∩ I. We layer X continuously with discs such that
each disc is bounded by a circle induced by one of the boundary components of h(Sk ×{x}).
Then we send each disc to {ti} × {x} with φ.

Figure 4.11: A G-trivial ball covering a strand and an example of tree connecting the
discs Di.

Now φ−1(Di× [0, 1]) is a closed ball βi in S3 by construction and is G-trivial as φ−1(Di×
[0, 1]) ∖ G = h((Di ∖ ti) × [0, 1]). Hence βi belongs to T . Notice that B1 intersects βi on a
disc Di, so that these balls induce a double bubble. It follows by (T3) that B1 ∪ β1 belongs
to T . As the balls Di are disjoint, (B1 ∪

⋃
j∈J1,iK βj)∩ βi+1 = Di+1. Hence, these balls induce

a double bubble. By induction on i, we obtain that B1 ∪
⋃

j∈J1,kK βj is in T .
At that point, we simplify the notations, and indexes i, j will span the integer interval J1, kK
in

⋃
. We have that (B1∪

⋃
j βj)∩S ′ = h(

⋃
j Dj×{1}). Now, we consider a tree T connecting

the discs Di as in the Figure 4.11. Then, we thicken the edges of that tree to replace each
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edge e joining two discs with a band re. It follows that each h(re × [0, 1]) is a closed ball
in S3 that intersects B1 ∪

⋃
j βj on a U shaped disc and is disjoint from G (thus it is G-

trivial). Using both (T3) and (T4) on each of the balls induced by the bands, we add balls
to B1 ∪

⋃
j βj to get B ∈ T such that B intersects S ′ on a single connected component:

h((
⋃

e∈T re ∪
⋃

iDi) × {1}). Finally, we add to B the ball B′
1 ∖B disjoint from G which

intersects S ′ on a disc : the complement of h((
⋃

e∈T re ∪
⋃

iDi)× {1}. Since its intersection
with B is a disc, they induce a double bubble and B′

1 ∈ T by (T3).

In the following, we will assume that there exists a bubble tangle T of order k and a
sphere decomposition f : S3 → T of G of width less than k in order to reach a contradiction.
Let e = (u, v) ∈ E(T ) be an edge and x be a point of e so that f−1(x) is transverse to
G. Notice that x cuts T in two trees : Tu(x) and Tv(x), where Tu(x) is the tree containing
the endpoint u. By de�nition, f−1(x) = S is a sphere in S3 such that |C(G ∩ S)| < k. It
follows by (T2) that exactly one of f−1(Tu(x)) or f−1(Tv(x)) belongs to T . We de�ne an
orientation o : T → V (T ) induced by T as follows: if f−1(x) is transverse to G, o(x) := v if
f−1(Tu(x)) ∈ T , or o(x) := u if f−1(Tv(x)) ∈ T . In other words, at a point x where f−1(x)
is transverse to G, the orientation o orients x outwards, toward the �big side�. If f−1(x) has
a tangency with G, note that for any close enough neighbour y of x, f−1(y) is transverse to
G, and we de�ne o(x) := o(y), making an arbitrary choice if needed. As we consider edges of
the tree T to be intervals, we will use interval notations: we write [u, v] for the edge (u, v),
and more generally [x, y] to describe all the points on the edge between x and y. We say that
an orientation o is consistent if for any x on some edge such that f−1(x) is transverse to G,
o is constant on [x, o(x)]. The following lemma shows that the orientation o can be assumed
to be consistent on all the edges of the tree T .

Lemma 4.8. Let us assume that there exists a bubble tangle T of order k and a sphere
decomposition f : S3 → T of G of width less than k. Then there exists a sphere decomposition
of the same tree such that o is consistent on T .

Proof of Lemma 4.8. Lemma 4.7 shows that the orientations of spheres are consistent be-
tween braid-equivalent spheres. Therefore, in order to prove Lemma 4.8, we want to control
what happens outside of these braid-equivalences, that is, when the quantity |C(f−1(x)∩G)|
varies on an edge of T . These variations, local maxima and minima, occur only when spheres
have a tangency with G, since two spheres transverse to G and close enough are braid-
equivalent. By applying a small perturbation to f if needed, we can assume that the spheres
of f tangent to G have at most one tangency.

Let e = [u, v] be an edge of T and let x be some point interior to it such that f−1(x)
has no tangency with G. Up to switching u and v, we can assume that o(x) = v. Then, we
let t1, . . . , tn ∈ [x, v]n be all the points in [x, v] where f−1(tj) has a tangency with G. By
Lemma 4.7, for all y ∈ [x, t1), we have that o(x) = o(y) = v since f−1(y) is braid-equivalent
to f−1(x) (since all the intersections between the spheres and G are transverse between x
and y, one can glue the local homeomorphisms to get one between f−1([x, y]) and Sj × [0, 1]
for some j). There only remains to show that o(x) = o(y) for all y ∈ (t1, t2) and we will be
done by induction, since this will imply by our de�nition of o that o(t1) is also equal to o(x).
We set St = f−1(t1) and S ′ = f−1(y) for a �xed y ∈ (t1, t2).
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� We �rst consider the case where there is a local maximum on t1, i.e., locally around
the tangency τ the embedding of G has either the �V� shape described in Figure 4.12
(recall that both the spheres and the embedding of the graph are piecewise-linear) or
St is tangent to a vertex. The idea is to deal �rst with this tangency and then with
every other strand in a similar manner as in the proof of Lemma 4.7. As we will use
an argument similar to the proof of Lemma 4.7, let us introduce similar notations:
f−1(x) = S, B1 = f−1(Tu(x)), f−1(t1) = St, and I the space between S and S ′:
I = S3 ∖ (B̊1 ∪ f̊−1(Tv(y))).

St

S

τ
S ′

S
S ′

B

St

S

τ
S ′

S
S ′

B

Figure 4.12: The tangency τ on S1 and a cover by a G-trivial ball.

Let g be the connected component of G ∩ I containing τ . Because S and G are
transverse, g∩S is either a closed disc if τ belongs to a ball, a point if τ is a degree one
vertex, or two points otherwise. Let us choose D a closed disc on S containing g ∩ S
on its interior and with no other intersection with G: D∩G = g∩S ⊂ D̊. We can now
de�ne B, a closed ball contained in I intersecting S on D, S ′ on a disc, and containing
g in its interior (see Figure 4.12). Then B is G-trivial. Indeed, either τ is the point of
a �V� shape and B ∖ G is homeomorphic to B(0, 1) ∖ [−1, 1] × {(0, 0)}, or B ∖ G is
homeomorphic to B(0, 1)∖ [−1, 0]×{(0, 0)} in the other cases (up to homeomorphism
of B ∖ G the thickness of g here does not matter, it can be a point or a segment or a
closed ball). Furthermore, recall that we assume that k ≥ 3 in this section and B is by
de�nition transverse to G, so B belongs to T and thus by (T3), the ball B ∪ B1 also
belongs to T .

At this stage, the space I ∖ (B ∪G) is homeomorphic to Sk × [0, 1] so that we can use
a similar technique as in the proof of Lemma 4.7 to deal with the other elements of G
in I and cover what remains with balls disjoint from B, we apply (T3) inductively and
conclude that f−1(y) belongs to T .

� If there is a local minimum on St, we let τ denote the point of tangency on St. Either
o(y) = o(x) = v and the proof is over, or o(y) = u. In the latter case, the setup is
exactly the same as in the previous case: τ is now a local maximum from S ′ to S so
that o(x) = o(y) = u which is in contradiction with (T2) on f−1(x) by de�nition of o.

Lemma 4.8 ensures that for any edge e = (u, v) of T , there exists a point xe so that all the
points in (xe, v) are oriented towards v, while all the points in (u, xe) are oriented towards u.
Hence, by subdividing each edge e of T at this xe, we can think of o as assigning a direction
to each edge. This directed tree is the main tool that we use in the proof of Proposition 4.6.

Proof of Proposition 4.6. Let us assume that there exists both a bubble tangle of order k
and a sphere decomposition f : S3 → T of width less than k. By Lemma 4.8, there exists



98 Chapter 4. Tree-like decompositions of knots and spatial graphs

a sphere decomposition of width less than k so that the orientation o as de�ned above is
consistent. Denoting by T ′ the tree T where each edge has been subdivided once, this
orientation corresponds to a choice of direction for each edge of T ′. Every directed acyclic
graph, and thus in particular the tree T ′ contains at least one sink, see Figure 4.13.

This sink cannot be a leaf of the tree. Indeed, let e = [ℓ, u] be an edge of T incident to
a leaf ℓ. By de�nition, f−1(ℓ) is a point disjoint from G, and thus for any y in (ℓ, u) close
enough to ℓ, f−1(y) is a sphere disjoint from G. Hence f−1(Tℓ(y)) is a G-trivial ball and
belongs to T . It follows that all edges incident to leaves of T ′ are oriented inward. This sink
cannot be a degree-two vertex either, as the tree T ′ was de�ned in such a way that the two
edges adjacent to a degree-two vertex are always oriented outwards. Finally, this sink cannot
be a degree-three vertex, as this would mean that the three balls induced by a double bubble
are in T , which would violate (T3). We have thus reached a contradiction.

Figure 4.13: An example of T ′ from T leading to at least one sink.

4.3.2 Tightness of the obstruction.

In this part, we want to show that bubble tangles form a tight obstruction to sphere decom-
positions, in the sense that a bubble tangle of order k exists whenever a sphere decomposition
of width less than k does not exist.

Proposition 4.9. Let G be an embedding of a graph in S3 and k be an integer at least three.
If G does not admit a sphere decomposition of width less than k, then there exists a bubble
tangle of order k.

The idea of the proof is to show that, given a collection of closed balls satisfying the
axioms (T1) and (T4) of bubble tangles, then either we can extend this collection to a
bubble tangle, or there exists a partial sphere decomposition of width k which sweeps
the space "between" the balls of the collection. We �rst introduce the relevant de�nition.

LetG be a graph embedded in S3. A partial sphere decomposition ofG is a continuous
map f : S3 → T where T is a trivalent tree with at least one edge such that:

� For all x ∈ L(T ), f−1(x) is a point disjoint from G or a closed ball B.

� For all x ∈ V (T )∖ L(T ), f−1(x) is a double bubble transverse to G.

� For all x interior to an edge, f−1(x) is a sphere transverse or �nitely tangent to G.
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The leaves of T having preimages by f that are not points are called non-trivial leaves.
Let G be a graph embedding in S3 and A be a collection of closed balls in S3. A partial
sphere decomposition f conforms to A if, for all x ∈ L(T ), f−1(x) is either a point disjoint
from G, or a closed ball B such that there exists A ∈ A such that ∂B and ∂A are braid
equivalent and B ⊂ A. In the latter case we say that x conforms to A. The width of a partial
sphere decomposition is de�ned like the width of standard sphere decompositions: it is the
supremal weight of spheres that are preimages of points in the interiors of edges of T .

Now, the proof of Proposition 4.9 hinges on the following key lemma. Its proof is similar
to branchwidth-tangle duality proofs [116] in that it builds a bubble tangle inductively, but
the continuous nature of our objects makes us rely on trans�nite induction in the form of
Zorn's lemma.

Lemma 4.10. Let G be an embedding of a graph in S3, k be an integer at least 3, and A be
a collection of closed balls in S3 satisfying (T1) and (T4). Then one of the following is true :

� A extends to a bubble tangle of order k.

� there is a partial sphere decomposition of width less than k that conforms to A.

The proof of Lemma 4.10 relies on the following preliminary lemma, which allows us to
slightly move the non-trivial leaves of a partial sphere decomposition.

Lemma 4.11. Let f : S3 → T be a partial sphere decomposition that conforms to a set of
closed balls T . Let ℓ ∈ L(T ) be a non trivial leaf such that ∂f−1(ℓ) conforms to A ∈ T . Let
B be a closed ball such that B ⊂ A and ∂B is braid-equivalent to f−1(ℓ). Then there exists
a partial sphere decomposition f ′ : S3 → T that conforms to T such that w(f) = w(f ′) and
f ′−1(ℓ) = B.

Proof of Lemma 4.11. Let us denote by I the subset of S3 that is swept by f , that is, the
union

⋃
f−1(x) where x ranges over all the points of T except the non-trivial leaves. Now,

(I∖B)∖G is homeomorphic to I∖G, since the subset of S3∖G in B∖f−1(ℓ) is homeomorphic
to the product of a sphere with holes with an interval, by de�nition of braid-equivalence. We
can easily extend this homeomorphism to a homeomorphism between I ∖B and I as is done
in the proof of Lemma 4.7, and then we compose f with this homeomorphism to obtain a
new partial sphere decomposition f ′ so that w(f) = w(f ′) and f ′−1(ℓ) = B.

Proof of Lemma 4.10. The proof relies on Zorn's lemma. Assume that there is no partial
sphere decomposition of G of width less than k that conforms to A, for ease of notation,
we denote this assumption by (NPD). Let X be the set of collections of closed balls in S3

satisfying (T1), (T4) and (NPD) and whose boundaries are transverse to G. Then, we order
X by inclusion. Our aim is to apply Zorn's lemma on X in order to get a maximal set of
closed balls containing A and still satisfying (T1), (T4), and (NPD).

We �rst show that every chain of X admits an upper bound in X. Let C be a chain of X
and T =

⋃
c∈C c. If C is empty, then the set of G-trivial balls is an upper bound by de�nition

of X. Otherwise, there exists c in C, and as c satis�es (T4) and c ⊂ T , we also have that
T satis�es (T4). Let B be a closed ball in T . Then there exists c in C such that B belongs
to C. Since c satis�es (T1), we have |C(∂B ∩ G)| < k, and thus T satis�es (T1) as well.
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Finally, we establish (NPD) for T : we assume by contradiction that there exists a partial
sphere decomposition f of G of width less than k that conforms to T . For each non-trivial
leaf ℓ of T , by de�nition of conformity, there exists a ball Bℓ ∈ cℓ ∈ C such that ∂f−1(ℓ) is
braid-equivalent to ∂Bℓ. As C is totally ordered and L(T ) is �nite, there is an element c of
C that contains all the sets cℓ. This implies that f conforms to c which is absurd because c
satis�es (NPD). We conclude that T satis�es (NPD). Hence T belongs to X and is an upper
bound of C.

By Zorn's lemma, since every chain of X admits an upper bound, it admits a maximal
element: there exists T such that A ⊂ T , and T is maximal with respect to (T1), (T4), and
(NPD).

Notice that T satis�es (T3). Indeed, if there exist B1, B2, B3 ∈ T 3 such that B1, B2, B3

induce a double bubble B transverse to G and S3 = B1 ∪ B2 ∪ B3, then each of the spheres
S1, S2, S3 induced by the double are transverse to G. Each of them admits a braid-equivalent
sphere in its neighbourhood, we choose for each of them a sphere S ′

i, braid-equivalent to Si

and disjoint from B (such a sphere exists because each Si has braid-equivalent spheres on
both of its sides).

B′
1 B′

2

B′
3

B′
1

B′
2B′

3

Figure 4.14: A partial sphere decomposition that conforms to B.

Let B′
i be the closed ball disjoint from B such that ∂B′

i = S ′
i. As Si and S ′

i are braid-
equivalent, there is a homeomorphism hi : Sk × [0, 1] → Ii ∖G; where Ii = Bi ∖ B̊′

i. As seen
in the proof of Lemma 4.7, we can extend h−1

i to a continuous function ϕi : Ii → S2 × [0, 1].
We can now construct a partial sphere decomposition that conforms to B1, B2, B3 (see Figure
4.14) on the trivalent tree made of 3 edges ({v0, v1, v2, v3} , {[v0, v1], [v0, v2], [v0, v3]}).

f(x) =


v0 if x ∈ B
vi if x ∈ B′

i

y ∈ [v0, vi] ≈ [0, 1] if x ∈ Ii and hi(x) = (·, y)

This partial sphere decomposition is in contradiction with T satisfying (NPD), thus T sat-
is�es (T3).

Now, if T satis�es (T2), it is a bubble tangle, and we are done. Otherwise T does not
satisfy (T2): there exists some sphere of weight less than k so that none of the two balls that it
bounds are in T . In that case, we can de�ne a partial sphere decomposition that conforms to
T . Let S be such a sphere in S3: |C(S∩G)| < k and for B1, B2, its sides, neither B1 ∈ T nor
B2 ∈ T . Notice that T ∪{B1} is a collection of closed balls satisfying both (T1) and (T4). By
maximality of T under (T1), (T4), and (NPD), there exists a partial sphere decomposition
f1 : S3 → T1 of width at most k that conforms to T ∪ {B1}. As f1 does not conform to T ,
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it necessarily admits a non-trivial leaf ℓ1 such that ∂f−1
1 (ℓ1) is braid-equivalent to ∂B1 = S

and f−1
1 (ℓ1) ⊂ B1. Similarly, there exists a partial sphere decomposition f2 : S3 → T2 of

width at most k that conforms to T ∪ {B2} with a non-trivial leaf ℓ2 such that ∂f−1
1 (ℓ2) is

braid-equivalent to ∂B2 = S and ∂f−1
2 (ℓ2) ⊂ B2. Now, by Lemma 4.11, f1 and f2 can be

modi�ed so that f−1
1 (ℓ1) is B1, and f

−1
2 (ℓ2) is B2. Now, f1 and f2 can be pasted together at

ℓ1 and ℓ2 to yield a single partial sphere decomposition of width k which conforms to T . We
reach a �nal contradiction that concludes the proof.

Remark 4.12. We use the axiom of choice in this proof for convenience, but it seems likely
that one can just rely on the countable axiom of choice since, while there are uncountably
many spheres with a low number of intersections with G, there are only countably many
isotopy classes of those.

We can now prove Proposition 4.9.

Proof of Proposition 4.9. We denote by A the collection of G-trivial balls. By de�nition, A
satis�es (T4), and since G-trivial balls have weight at most 2, it also satis�es (T1) for k at
least 3. Therefore, by Lemma 4.10, either A extends to a bubble tangle of order k, or there
exists a partial sphere decomposition of width less than k conforming to it. In the �rst case,
we are done. In the second case, we are also done, since, given a partial sphere decomposition
of width less than k conforming to G-trivial balls, it is straightforward to sweep within the
G-trivial balls so as to obtain a sphere decomposition of width less than k.

4.4 From compression-representativity to bubble tangles

The goal of this section is to show Theorem D: when a graph G is embedded on a compact,
orientable, and non-zero genus surface Σ, there exists a bubble tangle naturally arising from
the compression-representativity of G on Σ. In the following, we assume Σ is compact,
orientable, and not a sphere.

4.4.1 Compression bubble tangle

Under the hypotheses above, the idea of the proof is to show that there exists a natural
choice of a small side for every sphere with fewer intersections with G than the compression-
representativity. Intuitively, such a sphere will only cut discs or �trivial parts� of Σ on one of
its sides, which we will designate as the small one. That is justi�ed by the following lemma.

Lemma 4.13. Let Σ be a surface embedded in S3 and S be a sphere in S3 that intersects Σ
transversely such that there is at least one non-contractible curve in the intersection. Then
one of the non-contractible curves is compressible.

Proof. As Σ and S are transverse, the intersection of S and Σ consists of a disjoint union of
simple closed curves. Each one of these curves bounds two discs on S. Let α be a curve of
S ∩ Σ that is innermost in S, i.e., it bounds a disc D in S that does not contain any other
curve of S ∩ Σ. If α is non-contractible, then the disc D is a compression disc for α, and
thus α is compressible. Otherwise, α bounds a disc DΣ in Σ (see for example Epstein [37,
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Theorem 1.7]). We deform S continuously by �pushing� D through DΣ while keeping S
embedded (see Figure 4.15) until α disappears from Σ ∩ S.

α

Σ S Σ S

Figure 4.15: Removing a trivial curve from S ∩ Σ.

Repeating this process on a new innermost curve of S will eventually yield a non-
contractible compressible curve. Indeed, the number of curves in the intersection is �nite
(recall that both surfaces are piecewise linear), decreases at each step, and one of the curves
in Σ ∩ S is non-contractible.

A direct consequence of this lemma is that if G is embedded on a surface Σ intersected
by a sphere S and the intersection has weight less than c-rep(G,Σ), then all the simple
closed curves in the intersection are contractible. Therefore, one of the two balls bounded
by S contains the meaningful topology of Σ, while the other one only contains spheres with
holes (see Figure 4.16). In order to formalise this, we will rely on fundamental groups. The
inclusion of a subsurface X on Σ induces a morphism i∗ : π1(X) → π1(Σ). If this morphism
is trivial, we say that X is π1-trivial with respect to Σ.

De�nition 4.14 (Compression bubble tangle on an embedded surface). Let G be a graph
embedded on Σ, a surface embedded in S3 such that c-rep(G,Σ) ≥ 3 and set k = 2

3
c-rep(G,Σ).

The compression bubble tangle c-T , is the collection of balls in S3 de�ned as follows: for
any sphere S in S3 transverse to G such that |C(S∩G)| < k, by Lemma 4.13, there is exactly
one connected component A of Σ∖ S that is not π1-trivial. Exactly one of the open balls B
of S3 ∖ S does not contain A, i.e., contains only π1 − trivial components of Σ, we put this
side in c-T : B̄ ∈ c-T .

The main step in the proof of Theorem D is to prove that a compression bubble tangle
on the torus is indeed a bubble tangle.

Proposition 4.15. A compression bubble tangle is a bubble tangle.

Note that Proposition 4.15 immediately implies Theorem D by Proposition 4.6 (the the-
orem is trivial if c-rep(G,Σ) < 3). Therefore, the remainder of this section is devoted to
proving Proposition 4.15.

By de�nition, a compression bubble tangle satis�es (T1) and (T2). We then notice that
(T4) is veri�ed whenever the compression-representativity of G on Σ is greater than 2.

Lemma 4.16. If c-rep(G,Σ) ≥ 3 then for all G-trivial balls B, B ∩ Σ is π1-trivial.
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A

Σ∖ A

B

Figure 4.16: Intersection between a torus knot T5,6 embedded on a torus and a sphere.
Here the ball B containing the disc on the right is in the compression bubble tangle.

Proof of Lemma 4.16. Let B be a G-trivial ball. Then its boundary S has weight at most
two. By Lemma 4.13 and the de�nition of compression-representativity, this implies that
S intersects Σ only on contractible curves. Therefore, S bounds two balls, exactly one of
which, denoted by B′, is such that B′∩Σ is π1-trivial. This implies that B′ is G-trivial. Now
either B = B′ and we are done, or they are di�erent. In the latter case, this would directly
imply that G is made of two trivial pieces and is thus an unknot, plus possibly some trees
attached to it. Since an unknot has compression-representativity one (see for example [103,
Example 3.2]), this would contradict the assumption that the compression-representativity
is at least three.

The hard part of the proof is to show that (T3) is satis�ed. This is more delicate than
it seems at �rst glance, since any surface can be obtained by gluing three discs, and these
three discs can even come from a double bubble: we provide an example in Appendix 4.6.3
and Figures 4.23, 4.25, and 4.26 in the case of the torus.

Henceforth, we will proceed by contradiction and assume that we can cover S3 by three
closed balls B1, B2, B3 of c-T that induce a double bubble DB transverse to Σ and G. Thus Σ
is covered by three surfaces with boundary: Σ∩B1,Σ∩B2 and Σ∩B3 which are π1-trivial by
de�nition of c-T . In the following, we write Si = ∂Bi. We �rst show that we can furthermore
assume that these surfaces are a disjoint union of closed discs on Σ.

Lemma 4.17. Let G be a graph embedded on Σ, a surface embedded in S3. Let c-T be the
compression bubble tangle associated to G and Σ. If there is a double bubble DB transverse
to Σ, inducing three balls B1, B2, B3 ∈ c-T 3 such that B1∪B2∪B3 = S

3, then we can isotope
the double bubble so that we additionally have that Bi ∩ Σ is a union of closed discs.

Proof of Lemma 4.17. By Proposition 4.13, each simple closed curve c of
⋃
C(∂Bi ∩ Σ) is a

contractible curve of Σ. Hence it bounds a unique closed disc Dc on Σ (the other connected
component being a surface with non-zero genus and a puncture), and we can de�ne a slope3

3This terminology mirrors the one of Robertson and Seymour in [117].
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s that associates the disc Dc to each c:

s :
⋃

i∈{1,2,3}
C(∂Bi ∩ Σ) → P(Σ)

c 7→ the closed disc Dc of Σ such that ∂Dc = c

Let c be a simple closed curve of Si ∩ Σ such that s(c) ̸⊂ Bi and that is innermost in
Si with respect to that property, i.e., c bounds a disc Dc in Si such that all c′ ∈ C(D̊c ∩ Σ)
satisfy s(c′) ⊂ Bi (see Figure 4.17). Denote by Dc′ the disc associated to each c′ on Si.

c

α
c'

→
cc

s(c)

Bi ∩ Σ

Figure 4.17: An example of c, innermost with the property that s(c) ̸⊂ Bi. The green
and blue parts depict the intersection between Σ and the two other balls induced by the
double bubble.

The idea is now to push s(c), a disc of Σ, through Dc until s(c) ⊂ Bi (see Figure 4.18).
In order to remove both the interior of Dc and its boundary, we de�ne α, a simple closed
curve homotopic to c in Σ ∩ Bi lying in a tubular neighbourhood of c and disjoint from Si.
Then Dα = s(α) satis�es Dc ⊂ Dα.

To be more precise, let ∆ be the disc of Si∖ c not disjoint from s(c). As c is innermost on
Si for the property that s(c) ̸⊂ Bi, ∆ ∖ Σ has one connected component W which contains
c in its boundary, and possibly other connected components which are open discs (any other
surface would contradict the fact that c is innermost). These discs may cobound with Dα

some closed balls of Bi. But in any case, it su�ces for Dα to cross throughW during the push
(see Figure 4.18). As c is innermost on Si with respect to the property above, S3∖ (W ∪Dα)
has two connected components. Let A be the one disjoint from Bi, it is necessarily disjoint
from Σ (again because c is innermost). Hence the push described here makes Dα sweep A
until it crosses W to end in Bi.

This transformation can be made a piecewise-linear isotopy since A ∪ W̊ is disjoint from
Σ and both W and Σ are piecewise-linear. We apply this transformation on Σ to obtain a
new embedding Σ′. The number of elements in C(Si ∩Σ′) is smaller than C(Si ∩Σ) so that
repeating this process will eventually end.

Σ

Bi

→W
Σ

Bi

Figure 4.18: Pushing the surface Σ until c is removed from it intersection with Bi.
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During this transformation, for all j ∈ {1, 2, 3} the only modi�cations of Σ∩Bj were made
on s(c) such that DB∩Σ′ = DB∩Σ∖s(c) and the transversality is preserved. Furthermore,
|Si ∩G| did not increase so that the balls Bj still verify (T1) and are still in c-T since they
are either not intersecting G (hence G-trivial) or they contain the π1-trivial subparts of Σ′.

We repeat this transformation on Σ until there remains no simple closed curve of Si ∩ Σ
such that s(c) ̸⊂ Bi ∩ Σ for all i ∈ {1, 2, 3}. We obtain that Bi ∩ Σ is a disjoint union of
closed discs. Finally, we have described the isotopy on Σ for convenience, but up to applying
a homeomorphism, we can instead keep Σ �xed and apply an isotopy on DB and obtain the
same properties. This concludes the proof.

Then we de�ne Γ induced by the double bubble DB to be the intersection of the
double bubble with Σ: where vertices are the intersection of the common boundary of the
three discs with Σ and edges are the intersections of Σ with the discs. By Lemma 4.17, we
can assume that this graph is trivalent and cellularly embedded. It is naturally weighted
by endowing each edge with its weight, i.e., the number of connected components in its
intersection with G. Let us now state the lemma that we will use for the sake of contradiction.

Lemma 4.18. The total weight of Γ is less than c-rep(G,Σ):∑
e∈E(Γ)

|C(e ∩G)| < c-rep(G,Σ).

Proof. Since each edge of Γ bounds exactly two faces of Γ, i.e, discs of Σ; and Γ = DB ∩ Σ
we get the following equality:

|C(S1 ∩G)|+ |C(S2 ∩G)|+ |C(S3 ∩G)| = 2
∑

e∈E(Γ)

|C(e ∩G)| (4.1)

By de�nition of c-T , each ball Bi satis�es |C(Si ∩G)| < 2
3
c-rep(G,Σ) so that:

|C(S1 ∩G)|+ |C(S2 ∩G)|+ |C(S3 ∩G)| < 3 · 2
3
c-rep(G,Σ) = 2c-rep(G,Σ). (4.2)

Combining (4.1) and (4.2) concludes the proof: 2
∑

e∈E(Γ)

|C(e ∩G)| < 2c-rep(G,Σ).

Hence, if Γ contained a simple closed curve that is compressible, we would obtain the
contradiction that we are looking for. The rest of the proof almost consists of �nding such a
compressible curve, leading to the following proposition.

Proposition 4.19. There exists a set of edges X on Γ such that:∑
e∈X

|C(e ∩G)| ≥ c-rep(G,Σ).
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4.4.2 Merging process

The proof of Proposition 4.19 is the technical crux of Theorem D. It consists in de�ning a
merging process, which gradually merges two balls of a double bubble, and proving that at
some point in this merging process, one ball will intersect Σ in a non-trivial way. Thus, this
yields a compressible curve via Lemma 4.13. An additional di�culty is that this curve might
be non-simple in Γ; we circumvent this issue by �nding a fractional version of such a curve
instead, which will be strong enough to prove Proposition 4.19.

Proof of Proposition 4.19. In order to prove Proposition 4.19, we consider three balls B1,
B2, B3 inducing a double bubble DB on their boundaries and de�ne a merging process that
gradually merges two of these balls in a controlled way. This is illustrated in Figure 4.20
with a double bubble intersecting a torus.4 The point of this merging process is to yield a
family of balls, one of which will have a non-trivial intersection with Σ and thus allow us to
(almost) �nd a compressible curve.

The merging process depends on the shape of one speci�c disc D of the double bubble,
say the one between B1 and B2, which we will call a membrane to avoid confusion with the
many discs that we deal with. Each connected component of D∩Σ is a separating curve of D
with both ends on ∂D since intersections between D and Σ are edges of Γ. Considering these
arcs as the embeddings of edges of a graph on D, we consider the dual of this graph, which we
call the membrane tree and denote MT (D). Its set of vertices are connected components
of D ∖ Σ, V (MT (D)) = C(D ∖ Σ), and there is an edge between f, f ′ ∈ V (MT (D))2 if
f̄ ∩ f̄ ′ ̸= ∅. In the following we will consider E(MT (D)) = C(D ∩MT (D)) as there is a
natural one-to-one correspondence between the sets (see Figure 4.19). Note that MT (D) is
indeed a tree since it is the (weak) dual of an outerplanar graph.

D

MT (D)

Figure 4.19: The membrane tree (brown) of a membrane D whose edges of Γ stem from
D ∩ Σ (blue).

The merging process starts by shrinking a bit B2 and surrounding what remains by B3

so that B2 is now a closed ball within what was previously B2 while B3 is homeomorphic to
S2 × S1. On Σ, the edges that came from D = B1 ∩B2 are thus now replaced by thin bands

4In this �gure, the double bubble does not induce a cellularly embedded graph for clarity purposes, since
even on a torus the resulting picture would be too intricate to describe the merging process (compare with
pictures in Appendix 4.6.3).
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Figure 4.20: Three views of the merging process. Left: a 3D view of a double bubble
(purple and orange) intersecting Σ (blue). Middle: the membrane tree, which is pro-
gressively covered by a subtree. Right: The unfolded torus and the graph Γ evolving
throughout the merging process. It is �rst covered by 3 balls (orange, purple, green),
then 2 (purple and green) after the cylinder merges two of them. The green ball, which
covers the �remaining� space, is not shown on the left view for clarity purposes.
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belonging to the transformed B3 with two copies of each edge as boundaries of the bands.
We assume the shrinking to be small enough so that the copied edges intersect G the same
way the original edges do: this is always possible because the double bubble is transverse to
G and the vertices of G have been thickened. It follows that one face of Γ is now B3 ∩ Σ,
which is Σ with as many boundaries as there are connected components in (B2 ∪ B1) ∩ Σ
(see the unfolded torus on the right of the second row compared to the one on the right of
the �rst row in Figure 4.20). All the other faces of Γ are now discs whose boundaries consist
of edges with B3.

We now pick an arbitrary vertex v of MT (D) and connect B1 with B2 by a small solid
cylinder disjoint from Σ whose ends are glued on B1 and B2 in the face indicated by v. This
new ball is denoted by B1,2. This step can be seen on the second row of Figure 4.20.

For e an edge of MT (D) adjacent to v, we then grow this cylinder so that it entirely
covers e. This amounts to connecting the surfaces of Σ∩B1,2 (intuitively, the bands between
the copies of edges disappear, see the right column of Figure 4.20). Indeed, when the edge
e of MT (D) is covered by the growing cylinder, the two surfaces containing the initial discs
of B1 and B2 incident to e are glued along e. This process is then iterated by adding more
edges of MT (D), thus growing a subtree of MT (D), until that subtree has fully grown and
is MT (D). This is illustrated in the third and fourth rows of Figure 4.20. Eventually, the
whole membrane is covered so that B1,2 = B1 ∪B2

We track the evolution of the ball B1,2 during the merging process, which is parametrised
by the subtree T of MT (D) that has been merged. This leads to the following merging
function m:

m : MT (D)⊂ → P(Σ)
T 7→ B1,2(T ) ∩ Σ

whereMT (D)⊂ is the set of subtrees ofMT (D) and B1,2(T ) is the closed ball of the merging
process parametrised by T . By de�nition, we have that B1,2(T ) is contained in B1 ∪ B2,
transverse to Σ, and B1,2(T ) ∩ Σ = E(T ).

It will be convenient in the following to de�ne what kind of topology of Σ is captured by
a closed connected surface W embedded on Σ. For example, an annulus can be embedded
on the torus in two ways: either it contains a non-contractible curve of the torus, or it is
π1-trivial and contains irrelevant holes. The following de�nition aims to ��ll� these irrelevant
holes. Each contractible boundary component b of W bounds a disc Db on Σ that is disjoint
from W̊ . We de�ne •(W ) = W ∪ ⋃

b∈C(∂W )
b contractible

Db, the �lled surface induced by W .

It directly follows from the de�nition that ∂•(W ) ⊂ ∂W . It is also worth noticing that if
W is π1-trivial, then •(W ) = Db for one of the b.

We can now �nally use all these objects to �nd a fractional packing of curves in Γ with
enough weight. Let T be a minimal tree of MT (D)⊂ such that •(m(T )) is not a union of
discs. Note that such a tree exists, since for T = MT (D), we have B1,2(T ) = B1 ∪ B2 and
thus •(m(T )) = Σ. Necessarily, the surface •(m(T )) contains exactly one component that is
not a disc. Indeed, let e be an edge incident to a leaf of T . By minimality of T , •(m(T ∖ e))
is a union of disjoint discs. By de�nition of the merging process, m(T ) is m(T ∖ e), where
two copies of an edge have been merged back. If these copies were on two di�erent π1-trivial
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surfaces, their merging would have been π1-trivial too. Hence the two copies of an edge
were on the same disc of •(m(T ∖ e)), so that the merging of e glues together two distinct
segments on the boundary of that disc. This operation yields either a Möbius band, which
is impossible since Σ is orientable, or an annulus a.

By de�nition of •(m(T )), the boundaries of a are non-contractible curves of Σ. Lemma 4.13
ensures that one of these two curves is compressible. Since they bound an annulus on Σ,
they are homotopic on Σ and thus are both compressible. Let us denote them by b and b′.

At any stage of the merging process, some edges that were originally in Γ are now du-
plicated. Therefore, while the curves b and b′ are simple and disjoint, they might be using
some of those duplicated edges of Γ, but each such edge is used at most twice. Therefore we
have, denoting by X the set of edges of Γ used by b and b′.∑

e∈X
|C(e ∩ Γ)| ≥ 1

2

∑
e∈b

|C(e ∩ Γ)|+ 1

2

∑
e∈b′

|C(e ∩ Γ)| ≥ 2 · 1
2
c-rep(G,Σ),

where the last inequality comes from the fact that b and b′ are compressible and the de�nition
of c-rep(G,Σ). This last inequality concludes the proof.

This proposition directly implies Proposition 4.15, and thus Theorem D:

Proof of Proposition 4.15. A compression bubble tangle immediately satis�es the bubble tan-
gle axioms (T1) and (T2) by de�nition, and (T4) by Lemma 4.16. For the axiom (T3), assume
by contradiction that there exist three closed balls B1, B2, B3 ∈ c-T covering S3 and inducing
a double bubble transverse to Σ. By Lemma 4.17, we can assume the graph Γ induced by the
intersection of the double bubble with Σ is cellularly embedded. Then by Proposition 4.19,
the total weight of Γ is at least c-rep(G,Σ). This is a contradiction with Lemma 4.18.

4.5 Examples

We now combine our results to lower bound the treewidth of any diagram of a torus knot,
thus proving Corollary 4.1.

Proof of Corollary 4.1. Combining Proposition 4.3, Theorem C and Theorem D, it su�ces to
lower bound the compression-representativity of Tp,q bymin(p, q). The torus T has two curves
which obviously bound compression discs, we prove that there are no other compressible
curves. In S3, the torus T bounds one solid torus D2×S1 on each side, and in a solid torus S,
exactly one of the homotopy classes of simple closed curves on the boundary is compressible,
namely the one in the kernel of the inclusion map i∗ : π1(T) = Z2 → π1(S) = Z. The result
follows by observing that Tp,q intersects p times the �rst of these homotopy classes and q
times the other one, and thus has compression-representativity min(p, q).

More generally, the same argument can be applied to lower bound the treewidth of the
(p, q)-cabling [3, Section 5.2] of any nontrivial knot. We refer to Ozawa [103, Theorem 6]
for examples of spatial embeddings of any graph with high compression-representativity, and
thus high spherewidth.
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4.6 Additional results and remarks

4.6.1 Computability of compression-representativity

A natural question arising from our Theorem D is whether the compression-representativity
can be computed. A �rst reasonable step to do so would be to recognise compressible curves.
An algorithm from Matveev [91, Theorem 4.1.10] is able to do5 so by leveraging the normal
surface theory [53]. The setting, in our words, is the following: if α is a non-contractible
curve embedded on an orientable surface Σ embedded in S3, we �rst cut S3 along Σ to obtain
two 3-manifolds M1,M2 with boundary which both have a copy of α on their boundary. The
aforementioned algorithm will �nd a compressing disc for α within M1, or M2, if such a disc
exists. In that case, α is compressible on the corresponding side of Σ.

However, as soon as the surface on which G is embedded has genus 2, one can construct
in�nitely many non-contractible compressible curves. The construction starts by taking two
disjoint curves compressible �on the same side� and joining them by a path. Merging the
curves along the path yields a curve which is compressible if the path was complex enough:
the initial compression discs of the two curves can be linked by a rectangle with a �green-
house� shape that follows the aforementioned path on the same side of the surface as the
discs. This construction is illustrated by Figure 4.21.

Figure 4.21: Construction of two compressible non-contractible curves from two pairs of
such curves and two paths. Dehn twists along the grey curves on top yield other such
curves. A compression disc is shown for the curve obtained from the green pair.

5The algorithm is expressed in terms of knot genus, which is equivalent to what is expressed here since a
knot is of genus 0, i.e., an unknot, if it is the boundary of a properly embedded disc in the 3-manifold with
boundary considered.



4.6. Additional results and remarks 111

A Dehn twist6 is a type of self-homeomorphism of a surface which can be thought of as
a local �twist� of the surface around a given curve as pictured in Figure 4.22. By applying
Dehn twists along a compressible curve that intersects only the aforementioned path, we
obtain a new compressible curve which can be non-contractible depending on the path (such
valid curves for Dehn twists are pictured in grey on top of Figure 4.21). This behaviour is
not observed on the torus, on which there are only two non-contractible compressible curves
which only produce contractible curves.

Dehn twist

Figure 4.22: A Dehn twist of the red curve along the black curve.

Hence, to compute the compression-representativity, one should �nd a way to deal with
this in�nity of curves, for instance, by limiting the number of curves considered. A way to do
so could be to prove that all compressible curves can be constructed using the aforementioned
operation from a �nite number of initial compressible curves; and then limit the complexity of
paths used for the construction by their number of intersections with G. That way, one could
expect to deal with a �nite number of compressible curves, among which one will achieve the
compression-representativity.

4.6.2 Monotonicity of compression bubble tangles

The reader familiar with branchwidth theory and tangles from [117] may notice that our
axiom (T3) stands out from the others. Indeed, while the three other axioms mimic closely
the axioms of tangles in graph theory, (T3) only applies to 3 small balls which induce a
double bubble. That behaviour di�ers from graph theory, where (T3) would be expressed
by: �the whole space cannot be covered by 3 elements of the tangle�. In fact, it is easier
to manipulate tangles when the latter axiom is swapped with a combination of �the whole
space cannot be covered by 3 disjoint elements of the tangle� and, �if A is in the tangle, and
B ⊂ A is small, then B is in the tangle�. By comparison, (T3) is weaker: we lose the stability
by inclusion. From their de�nition, one can see that compression bubble tangles satisfy the
stronger property. Intuitively, the small side of a sphere is the one that only cuts discs from
the surface, if we have an inclusion, the sphere will only cut smaller discs.

Proposition 4.20. Let G be a graph embedded on Σ such that c-T is de�ned. Let k be the
order of c-T , then c-T is stable by inclusion up to (T1): for every closed balls A, B of S3, if
A ∈ c-T , B ⊂ A, and |C(∂B ∩G)| < k, then B ∈ c-T .

Proof. Let A and B be two closed balls of S3 such that |C(∂A ∩G)| < k, |C(∂B ∩G)| < k,
and A ∈ c-T . By de�nition, A ∩ Σ is π1-trivial. Since B ⊂ A, we have B ∩ Σ ⊂ A ∩ Σ so
that the canonical inclusion morphisms i∗ satisfy π1(B ∩Σ) → π1(A∩Σ) → 0. Hence, B ∩Σ
is π1-trivial and B ∈ c-T .

6We refer to [130] for a formal de�nition.
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4.6.3 Covering a torus with three discs from a double bubble

In this part, we describe a standard torus that can be covered by 3-balls induced by a double
bubble which intersects the torus on three discs, as pictured in Figure 4.23. This double
bubble is described in Figures 4.24, 4.25, 4.26, 4.27 and one can prove that this is, up to
homeomorphism, the only double bubble realising such a cover. We will now try to describe
these intricate depictions of this double bubble. Furthermore, it is worth noticing that this
construction can be generalised to standard surfaces of higher genus.

Figure 4.23: Covering a torus with three discs from a double bubble.

In the following, the remaining space of each �gure is covered by a green ball that we
do not represent for the purpose of preserving the clarity of our embeddings in space. The
intersection of this ball with the torus is a green disc that we picture in Figure 4.23 and 4.26.
First, we describe the two balls in Figure 4.24: the �rst one, B1 in blue, is a rectangular
cuboid that will contain our rectangular torus shown in Figure 4.26 and Figure 1.3, except
on a rectangular notch deep enough to let an annulus of the torus uncovered. The second
ball B2, in red, �lls this notch except for a hole, so that the second ball looks like a thick
rectangular U . We then pull a disc out of B2 and wrap it around B1, as illustrated on the
right of Figure 4.25. By thickening this disc to dig inside B1 enough to reach the torus, we
obtain the �nal form of B2 whose boundary is depicted in the right part of Figure 4.24.

Figure 4.24: The spheres S1 (blue) and S2 (red) up to thickening the ribbon part.

The union of B1 and B2 is the initial rectangular cuboid except for the hole left by the
construction of B2 as pictured on the left of Figure 4.25. At this point, their intersection with
the torus is the union of the blue disc and purple disc shown in Figure 4.26 on the unfolded
torus. The remaining part of the torus is the rectangular green rectangle.
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Figure 4.25: The ball B1 ∪B2 in purple, B3 is the complement.

To be sure that this construction is a double bubble, it is enough to check that the
intersections B1 ∩B2 and B2 ∩B3 are discs. These discs are pictured in Figure 4.27. We will
not attempt to describe their shape further than the U shape from which the disc wrapping
around B1 is pulled. However, as a sanity check, one can verify that the boundaries of the
discs indeed are the same.

Figure 4.26: The double bubble and a torus inside, covered by three discs (up to thick-
ening the ribbon part of S2 by pushing it into S1).

Figure 4.27: The discs S1 ∩ S2 and S3 ∩ S2.





Chapter 5

A lower bound on the complexity of

splitting link diagrams

In this chapter, we study the minimal number of crossings one might need
to add in order to split a link diagram using Reidemeister moves. We show
that link diagrams requiring an arbitrarily large number of such additional
crossings exist.

This chapter is the fruit of a project with Arnaud de Mesmay and Jonathan Spreer. We
leverage the obstructions developed in Chapter 4 to prove our results.

5.1 Introduction

The Reidemeister theorem [138] is a fundamental and powerful result of low-dimensional
topology stating that any two diagrams of the same knot, or more generally link, can be
related by a sequence of Reidemeister moves, pictured in Figure 2.12. This theorem paved
the way for both theoretical results and computational applications. Indeed, many knot
invariants can be shown to be invariant by showing that they are not modi�ed by Reide-
meister moves, like tricolorability (see Section 1.1) or the Jones polynomial [69]. From a
computational point of view, this theorem allows for a discretisation of the space of possible
transformations to consider in order to study knot equivalence: it is enough to focus on
sequences of Reidemeister moves. This fact is at the root of a straightforward algorithm to
study many knot problems: at the level of diagrams, apply Reidemeister moves in a random
or brute force manner until a desired property is veri�ed.

Recall that a primary example of such a knot theory problem is recognising the trivial
knot, which is a �rst instance of the major problem of knot theory: deciding whether two
knots are equivalent or not. It turns out that some unknot diagrams [21], called �hard� un-
knots or culprits, exhibit an annoying behaviour for this algorithm. The maximum number
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of crossings of a diagram during the algorithm is larger than in the initial diagram: one �rst
needs to add crossings before being able to reach the untangled diagram. The existence of
such diagrams implies that it is not possible to untangle an unknot by applying only Reide-
meister moves that will not increase the number of crossings of a diagram, which represents
intuitively the complexity of the diagram. Such a culprit, called the Goeritz culprit, is pre-
sented in Figure 5.1, and proved to be hard in [21] where it is shown that at least one crossing
is required to untangle this unknot. We do not know of systematic techniques or methods
to prove easily that an unknot is a hard unknot. All the known results seem to resort to an
exhaustive search in the Reidemeister graph, which very quickly becomes unfeasible.

Figure 5.1: The Goeritz culprit: using Reidemeister moves, one must add at least 1
crossing to untangle this unknot.

Following the notations of [70, 21] we will denote by cr(D) the number of crossings in
the diagram D. Then, for two equivalent diagrams D1, D2 and a sequence of Reidemeister
moves R transforming D1 into D2, we de�ne Top(D1, R) which is the maximum of cr(Di)−
cr(D1) throughout the sequence of Reidemeister moves R where Di is the diagram D1 after
performing the �rst i moves of the sequence. The minimal number of extra crossings to pass
from D1 to D2 is denoted Add(D1, D2) which is formally the minimum of Top(D1, R) taken
among all the sequences of Reidemeister moves that transform D1 into D2. When we see D2

as a goal diagram, Add(D1, D2) is a lower bound on the number of crossings to add during
the running of the aforementioned algorithm that applies Reidemeister moves on D1 to reach
D2.

In this last context, where D1 is an unknot diagram and D2 is a diagram of a simple curve,
D1 is a hard unknot if Add(D1, D2) is positive. This measure of complexity is called m in
[21] and has a ratio version called recalcitrance in [70]. Studying these complexity measures
and hard unknots turns out to be trickier than one might initially think. In fact, one of
the purposes of [21] is to con�rm or invalidate many claims about hard unknot diagrams
(using a computer search of the Reidemeister graph). Currently, only diagrams on which
Add(D1, D2) ≤ 2 are known, although it is conjectured that there exist unknot diagrams
D for which Add(D,D2) is arbitrarily large. Let us note that a proof of this conjecture,
formulated in terms of recalcitrance, is claimed in [70], but concerns about this proof are
raised in [21].

In this chapter, we will focus on the same measure of complexity, but the problem consid-
ered is the splitting problem: deciding whether a link L is split, i.e., whether there exists
a sphere disjoint from L separating at least 2 link components of L. If such a sphere exists,
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there exists a link diagram in which two unlinked sublinks are disjoint: they are separated
by a circle in the plane. Such a diagram will be called a split diagram. By capping o� the
aforementioned circle with one disc above and one disc below the projection, we verify that
the converse of the last assertion is true. In other words, the splitting problem is equivalent
to the search of a split diagram. Therefore, in terms of Reidemeister moves, we will study
Add(D1, D2) where D2 is a split diagram of a link L and D1 is any diagram of L. In this
setting, if the minimum of Add(D1, D2), denoted by Unl(D1), is positive among all split
diagrams D2 of L, we will call D1 a hard split link and its crossing-complexity will be
Unl(D1).

Our results. We exhibit a family of link diagrams D(p, q) of a split link L(p, q) with exactly
two unlinked sublinks. The �rst sublink K is made of two linked torus knots Tp,q and the
second one is an unknot U surrounding one of the torus knots (see D(7, 13) in Figure 1.31
for an example).

U

K

Figure 5.2: The link diagram D(7, 13) made of two split links: two linked T7,13 and an
unknot U .

For D′(p, q), any link diagram of L(p, q) in which U is disjoint from the other link com-
ponents, we prove Theorem E implying that Add(D(p, q),D′(p, q)) = Ω(min(p, q)).

Theorem E. For each n ≥ 2, there exists a diagram Dn with 2n2 + 2 crossings that is the
diagram of a split link Lof S3 with 3 components such that any sequence of Reidemeister
moves converting it to a split diagram of Ln passes through a diagram with at least 2n2 + 2

3
n

crossings.

In other words, we exhibit diagrams Dn for which Unl(Dn) =
√
2
3

√
n− 2− 2, so that:

Corollary 5.1. There exist hard split links with arbitrarily large crossing-complexity.
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To prove Theorem E, we exploit the unknot U present in every one of our diagrams
and which is separated in S3 from the remaining link components (one can picture a sphere
around K in Figure 1.31 which lies in between K and U). Our approach is to show that
if there exists a sequence R of Reidemeister moves where Top(D(p, q), R) stays small, we
can use the evolution of U throughout these moves to de�ne a sweepout of K with spheres.
By construction, each of these spheres has a small number of intersections with K. This
sweepout presents two notable di�erences from the sphere decompositions of Chapter 4. On
the one hand, it is simpler: it is linear and features no double bubbles. On the other hand, it
is not monotone: a sphere involved in this sweepout may go back-and-forth, this behaviour
never happens in sphere decompositions. Despite this last di�erence, the obstructions that
we developed in Chapter 4 are versatile enough to oppose the thinness of this sweepout.

Building the sweepout is not straightforward. Intuitively one would like to lift each unknot
U to a sphere by capping it o� above and below the diagram. However, the unknot U may
intersect itself during the sequence of Reidemeister moves, which complicates the process.
We alleviate this problem by leveraging results and methods from the article [24], which
provides a way to transform homotopies of curves on a Riemannian surface into isotopies of
similar length. This can be applied to our problem as follows: any sequence of Reidemeister
moves induces a homotopy of U in the plane, and we think of the projection of the link K
as a discrete metric for the curves in this homotopy: the length of such a curve will be its
number of intersections with K. In this framework, our assumptions imply that there exists
such a homotopy where the intermediate curves have a small length. Now, the techniques
of [24] show that this implies that there also exists an isotopy with the same bounds on the
length. Since an isotopy consists of simple curves, it is then easy to lift this planar isotopy
into a sweepout of S3 with 2-spheres, which all have a controlled number of intersections
with K. A subtlety is that we cannot exactly use the results of [24] as a black-box. Indeed,
the metric which is de�ned by the link K is not �xed since it might also be evolving with
Reidemeister moves. We explain in Section 5.3 why the proof techniques of [24] also deal
seamlessly with this issue.

The way we leverage our obstructions directly stems from the construction of our split
links. They consist of two torus knots Tp,q that are each embedded on a torus with high
compression-representativity. Hence, each one of them yields an obstruction: a bubble tan-
gle of order 2

3
min(p, q) by Theorem D. Each of these obstructions de�nes a small side for

each sphere of the sweepout since we assume that the number of intersections between the
spheres and K is small enough. We then obtain a contradiction by proving that under these
assumptions, the two small sides will always agree. However, by de�nition, they disagree on
the initial diagram. This work is done in Section 5.4.

Related work. Finding a sphere in space separating two links is easier than the problem
of �nding a disc that has a knot as its boundary. Therefore, the splitting problem has been
studied several times as a useful and easier problem for understanding the unknot recognition
problem [36, 78]. The problem is interesting in itself and several of its aspects are known.

It was shown by Haken that this problem is decidable in 1961 [53] using the theory of
normal surfaces. It was later shown by Hass, Lagarias, and Pippenger that this problem is in
NP [54]. And several decision problems that stem from the splitting problem, like deciding
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whether changing at most k crossings can transform a link diagram into the diagram of a
split link, are even NP-hard [71].

Another natural consideration in relation to the iterated application of Reidemeister
moves is how many of those are needed to split a diagram. In 2005, Hayashi showed an
exponential bound [56] for this number. This bound was later greatly improved in [78],
where Lackenby provided a polynomial bound by re�ning the arguments of [54]. This proof
leveraged the work of Dynnikov on arc representations and grid diagrams, which are a way to
represent knots in grids [36]. Lackenby [78] showed that there exists a polynomial sequence of
moves on grid diagrams which leads to a split grid diagram while not increasing the number
of lines in the grid diagram. Since these diagrams with n lines naturally have at most n2

crossings, and moves on grid diagrams translate to Reidemeister moves, this result yields a
quadratic upper bound on our quantity of interest: Add(D1, D2).

Organisation of this chapter. After going through the speci�cs of this chapter in Sec-
tion 5.2, we will explain how to use the results of [24] in Section 5.3. This step is crucial
for our de�nition of sweepouts. Then, we will exploit our obstructions of Chapter 4 to prove
Theorem E in Section 5.4. Finally we will present some other link diagrams which our method
covers in Section 5.5.

5.2 Speci�c preliminaries

In the following, the foundation of our reasoning will be a link diagram D of a split link L and
the existence of a sequence of Reidemeister moves R on this diagram such that Top(D, R) ≤ k
for some k that we will specify later. Our goal will be to prove that such a sequence cannot
exist if k is too small.

Furthermore, we will be led to swap regularly our point of view between one in S3 and
one in R3, recall that they are equivalent by compacti�cation (see Chapter 2). We will make
use of the point of view in S3 to de�ne our obstruction while the one in R3 is more intuitive
to de�ne diagrams and projections.

Link diagrams. For p, q coprime integers, the link diagram D(p, q), is a link diagram which
consists of two sublinks: the �rst one K is made of two torus knots Tp,q linked together such
that they cross twice, as pictured in Figure 5.2 and 5.3, the second one is an unknot U which
circles one of the torus knots and intersects K twice. In the following proof, we will be mostly
considering one such diagram at a time so that D(p, q) will be shortened to D whenever there
is no ambiguity.

A �rst interesting remark is that these link diagrams are initially in minimal position,
except for the two intersections between U and K. Indeed, Murasugi computed the crossing
number of torus knots using bridge number [98, Proposition 7.5]:

Proposition 5.2. The crossing number of the torus knot Tp,q is min(p(q − 1), q(p− 1)).

As a direct corollary, which can be visualised on Figure 5.3:
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Tp,q

U

Tp,q

K

Figure 5.3: The link diagram D(7, 8) made of two split links: two linked T7,8 and an
unknot U .

Lemma 5.3. Let D be a link diagram equivalent to D(n, n+1) by Reidemeister moves. Then,
D has at least 2n2 crossings: cr(D) ≥ 2n2.

Proof. Let L be the link associated to D(n, n+1) and D a diagram of L. By Proposition 5.2,
both torus knot components Tn,n+1 of L have at least (n + 1) × (n − 1) = n2 − 1 crossings.
Since these two knots are linked, they share at least 2 crossings in each diagram equivalent
to D so that cr(D) ≥ 2n2.

In Chapter 4, our framework was designed to handle both spatial graphs and links. Since
we consider no vertices here, we will no longer make use of thickened balls and only work
with embeddings of links into S3. In this context, and in order to simplify notation, we will
be writing |K ∩ S| instead of |C(K ∩ S)| since these numbers coincide whenever K and S
are transverse or �nitely tangent.

From a sequence of Reidemeister moves to continuous operations. Throughout
this chapter, we will be working with a sequence of Reidemeister moves R converting the link
diagram D to a split diagram. We will consider that all of the intermediate diagrams are
obtained from the same projection p : R3 → R2, and that the sequence of Reidemeister moves
corresponds to an ambient isotopy ΦR of R3, so that the diagrams correspond to p(ΦR(L, t))
for a �nite number of times t. The projection p is regular except at the critical times of R,
which are times where the projection p ◦ ΦR(L) displays a tangency or a triple point (these
critical times are pictured in Figure 5.4). For any time t that is not critical, we denote by Lt

the link ΦR(L, t) and by Dt the diagram p(Lt) = p(ΦR(L, t)).
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RII RIII

Figure 5.4: The critical times of the two Reidemeister moves RII and RIII.

Notice that the de�nition of Top(D, R) naturally coincide with supt cr(Dt)− cr(D0). In-
deed, the diagram Dt at critical times has fewer intersections than one of Dt+ϵ,Dt−ϵ for ϵ
small enough. Furthermore, cr(Dt) is constant between 2 critical times.

In the next Section 5.3, it will be useful for us to consider separately the movements of U
and of K under the Reidemeister moves. We will use Kt as a shorthand for the diagram of K
at time t: p(ΦR(K, t)). Furthermore, for technical reasons, for U we will focus our attention
on the homotopy ϕU : S1 × [0, 1] → R2 induced in the plane by the projection p(ΦR(U)). We
denote the corresponding curves by Ut = ϕU(S1, t) and emphasise that we consider these as
closed curves in the plane, i.e., we forget about the information of which strand is over which
at each crossing.

R2

D

L

R2

R2 R2

R3 R3

R

ΦR

p p

Figure 5.5: De�nition of our homotopies from the sequence of Reidemeister moves R.

5.3 From homotopies to isotopies

The aim for this section is to leverage results of [24] to show that we can assume that our
unknot U remains a simple curve in the projection throughout the sequence of Reidemeister
moves:

Proposition 5.4. Let R be a sequence of Reidemeister moves bringing D to a split diagram
D2 and such that for all t ∈ [0, 1], cr(Dt) ≤ k for some integer k. Then there exists an
ambient isotopy Φ′ of R3 and an isotopy h : S1 × [0, 1] → R2 such that:

1. h(S1, 0) = U0 and h(S1, 1) = U1.

2. For any t ∈ [0, 1], the total number of crossings in the overlay of p(Φ′(K, t)) and h(S1, t)
in R2 is at most k.

We emphasise that in the second item of the proposition, we only consider the projection
of the sublink K in Φ′(K, t), and not the entire link. Therefore, the proposition provides an
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ambient isotopy for K in R3 and an isotopy for p(U) in R2, while preserving a bound on the
total number of intersections when projecting K via p.

This proposition follows from the techniques of Chambers and Liokumovich in [24]. We
�rst state one of their main results.

De�nition 5.5 (Chambers, Liokumovich [24, De�nition 1.3]). For γ a curve on S2, we
let −γ denote the curve γ with reversed orientation. Two curves α and β are ϵ-image

equivalent, α ∼ϵ β, if there exists a �nite collection of disjoint intervals
⊔n

i=1 Ii ⊂ S1 such
that |α(S1 ∖⊔

Ii)|+ |β(S1 ∖⊔
Ii)| < ϵ. We also require that there exists a permutation σ of

{1, . . . , n} and a map f : {1, . . . , n} → {0, 1}, such that α|Ii = (−1)f(i)β|Iσi for all i.
Theorem 5.6 (Chambers, Liokumovich [24, Theorem 1.1']). Suppose that γ is a smooth
homotopy of closed curves on a 2-manifold M and that γ0 is a simple closed curve. Then,
for every ϵ > 0, there exists an isotopy γ such that γ0 = γ0 and γ1 is ϵ-image equivalent to
a small perturbation of γ1. Additionally, for every t, there exists a t′ such that γt is ϵ-image
equivalent to a small perturbation of γt′. If γ1 is simple or is a point, then this homotopy also
ends at γ1, up to a change in orientation.

We think of this de�nition and theorem in more informal terms as follows. When a curve
α self-intersects in the plane, each crossing point can be resolved in two ways by reconnecting
the endpoints in a small ball around the crossing point (see the curve on the right side of
Figure 5.6 compared to the one in the middle). When all the crossings have been resolved in
some way and we obtain a simple closed curve α′, we say that α′ is a resolution of α. The
theorem states that if we have a homotopy γ on a surface between two simple curves γ0 and
γ1, one can obtain an isotopy γ between γ0 and γ1 (or its reverse) where each intermediate
curve γt is a resolution of some intermediate curve γt′ (the times t and t′ need not coincide).

In particular, ifM is endowed with a metric (for example a Riemannian one), the lengths
of γt and of γt′ will di�er by an arbitrarily small quantity. Therefore, Theorem 5.6 immediately
implies that for any ε > 0, if there exists a homotopy between two simple curves γ0 and γ1
where each intermediate curve has length at most L, then there also exists an isotopy between
γ0 and γ1 (or its reverse) where each intermediate curve has length at most L+ ε.

Theorem 5.6 can be applied as a black-box to prove Proposition 5.4 in the particular case
where the sublink K stays invariant throughout the sequence of Reidemeister moves R, i.e.,
ΦR(K, t) = ΦR(K, 0) for all t ∈ [0, 1]. Indeed, in that case, we can think of Kt as a discrete
metric which measures the length of a curve Ut by its number of intersections with Kt. More
formally, we can take γ to be the homotopy ϕU between U0 and U1, which are both simple
closed curves by the de�nition of the link diagram D. Then applying Theorem 5.6 provides
us with an isotopy U between U0 and U1 where all intermediate curves U t are obtained from
resolving intersections of some Ut′ . In particular, for any t ∈ [0, 1], the number of intersections
between U t and Kt is at most the number of intersections between Ut′ and Kt, which is at
most k because Kt = K0 and thus does not depend on t.

A careful reading of [24] shows that the general case of Proposition 5.4, where the diagram
Kt of the components K also evolves during the sequence of Reidemeister moves, can also be
obtained using the exact same proof techniques. The basic idea of the proof of Theorem 5.6
is to �rst decompose the homotopy in a sequence of local moves, and then replace each curve
γt by one of its resolutions.
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Figure 5.6: Left: A diagram of the unknot. Middle: A projection Ut of this unknot,
where the crossing information has been forgotten. Right: A resolution of Ut.

For the �rst step, they track discrete times where the self-intersection pattern (i.e., the
homeomorphism type) of γt changes. By an argument similar to the proof of the Reidemeister
theorem, one can assume that this only happens at critical events, when a curve γt undergoes
a homotopy move, which is a transformation analogue to a Reidemeister move but without
any crossing information, this step is formalised by their Proposition 2.1 and Lemma 2.2.

Inbetween the critical events, any homotopy of a curve γt can be applied similarly on any
of its resolutions, yielding an isotopy. Hence, the idea is to replace each of these Reidemeister
moves by a resolution of the move, as explained by their Figure 2. However, doing so in a
naive way runs into discontinuity issues, a basic example of which is detailed by Example 2
of [24] which is associated to their Figures 3 and 4. Therefore, the authors provide a more
intricate workaround: the crux of the proof of Theorem 5.6 is to show how to choose the
correct resolutions and connect their isotopies together. This is achieved by de�ning an
auxiliary graph of resolutions (see their Figure 7 for instance), synthesising how they are
connected by local isotopies: the precise de�nition for this graph follows their Figure 8. The
proof is achieved by �nding a path through it by using the handshaking lemma [39].

Now, in our case, the critical events are exactly the times when U undergoes a Reide-
meister move. In-between these critical events, there are other Reidemeister moves involving
either (i) both U and K, or (ii) only K. In case (i), the Reidemeister move only changes the
relative position of U and K, and the diagram of K stays unchanged. Therefore this is a ho-
motopy of U which can be applied to give an isotopy of any of its resolutions. When case (ii)
happens, the diagram p(K) changes, but U , considered up to isotopy, does not. Therefore,
by applying the same Reidemeister moves on p(K), any motion of U between critical events
can be applied to any of its resolutions while preserving the number of intersections with K.
These motions can then be connected using the same handshaking argument as in the proof
of Theorem 5.6. Summarising, the proof technique directly adapts to the case of an evolving
metric, as long as these evolutions are applied appropriately throughout the new sequence of
isotopies.
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5.4 Leveraging bubble tangles

From now on, we assume thanks to Proposition 5.4 that the homotopy ϕU of R2 rendering
U disjoint from K is an isotopy. In other words, for all t in [0, 1], Ut is a simple curve.
Furthermore, the sequence of Reidemeister moves R, as well as the ambient isotopy ΦR have
been modi�ed in accordance.

5.4.1 De�nition of the sweepout

For each t, we will associate a sphere to the simple curve Ut. We glue one of the boundaries
of two in�nite annuli on Ut in the direction of the diagram projection, one on top of it and
one on the bottom. Now seen in S3, these annuli form a torus pinched at ∞. Cutting the
surface at ∞ provides our sphere St (see Figure 5.7) such that St intersects Kt only on the
preimages of Ut ∩ Kt by the projection p. We now have a continuous family of spheres St

sweeping a continuous family of links Kt. Equivalently, by applying the ambient isotopy Φ−1
R

to St and Kt, we can assume that Kt is �xed. We will slightly abuse notation and make this
assumption while still denoting by St the family of spheres. We will denote by Θ an ambient
isotopy so that Θ(S0, t) = St.

Ut

.

.

.

.

.

.

R3

Ut ∞S3
Ut

St

Figure 5.7: Gluing two in�nite annuli on U and cutting the resulting pinched torus at
∞ in S3.

We now put in relation Top(D(n, n+ 1), R) and St:

Lemma 5.7. Our objects verify: supt∈[0,1] |St ∩Kt| − 2 ≤ Top(D(n, n+ 1), R).

Proof. Let us write cr(K,K ′) for the number of intersections between K and K ′, where K
and K are two link components of a link diagram. If K = K ′, then cr(K,K ′) is the number
of self crossings of K.

Since Ut is simple, we have that cr(Dt) = cr(Kt, Ut) + cr(Kt, Kt). By de�nition, Dt

is the diagram D(n, n + 1) at time t of the sequence of Reidemeister moves. Hence, it is
equivalent to D(n, n+ 1), so that adapting the proof of Lemma 5.3 yields cr(Kt, Kt) ≥ 2n2.
Furthermore, cr(Kt, Ut) = |St ∩Kt| by construction of St. By de�nition of D(n, n+1) = D0,
cr(D0) = 2n2 + 2. Hence, cr(Dt)− cr(D0) ≥ 2n2 + |Kt ∩ St| − 2n2 − 2.

Thus, supt∈[0,1] |St ∩Kt| − 2 ≤ supt∈[0,1] cr(Dt)− cr(D0) = Top(D(n, n+ 1), R).
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Hence, we will focus on the number of intersections between St and Kt in S3, in order to
lower bound Top(D, R). Changes in |Kt∩St| can happen only at critical times of R where the
number of crossings involving Ut in Dt increases or decreases. Therefore, we do not consider
RIII moves between Ut and Kt. Since RI cannot happen to Ut which stays simple, only RII
moves are relevant for our study. We de�ne the (dj)j to be the critical times of RII moves
involving both Ut and Kt. According to our de�nitions, the times dj, are the only times
where St is not transverse to Kt: at these times Kt and St are �nitely tangent.

Remark that compared to sphere decompositions of Chapter 4, the sweep-out de�ned by
the spheres St is most likely to do many back-and-forths and does not branch o�. However,
as long as the number of intersections of St with Kt is low enough, we will be able to de�ne
small sides using our obstructions from Chapter 4.

5.4.2 Obstruction to the sweepout

The link Kt is made of two linked torus knots K1, K2. Each of them can be embedded on a
standard torus as pictured in Figure 5.8. The compression-representativity of each embedding
is n. Notice that these tori intersect, and this will be of no consequence. By Theorem D,
there exist two compression bubble tangles T 1, T 2 of order 2

3
n, where T i is the compression

bubble tangle induced by the torus on which Ki is embedded.

S0

K2K1

Figure 5.8: Each link component embedded on a torus, and S0.

From now on, we assume that Top(D(n, n + 1), R) < k = 2
3
n − 2 so that |Ki

t ∩ St| ≤
|Kt ∩ St| < 2

3
n for i ∈ {1, 2} by Lemma 5.7. Hence, for all t ∈ [0, 1] ∖ {dj}j, St has a small

side Bi
t for each T i. We will study how these small sides evolve throughout the sweep-out.

In particular, we will be careful when using the notion of braid-equivalence introduced in
Chapter 4: the back and forths make it so that two spheres of the sweep-out, even when
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there is no Sdj between them, may intersect. Also, in a similar way to Chapter 4, we will be
careful with tangencies, where small sides are not de�ned.

5.4.3 Proof of Theorem E

We de�ne the agreement, which is a map a : [0, 1] ∖ {dj}j → {0, 1}, such that a(t) = 1 if
B1

t = B2
t and 0 otherwise. In order to show Theorem E, we will prove by contradiction that

Top(D(n, n + 1), R) ≥ 2
3
n − 2. For the sake of contradiction, recall that we have assumed

that Top(D(n, n+ 1), R) < k. We will �rst show that a(0) = 0 and a(1) = 1.
First, it is easy to see that a(1) = 1. Indeed, U1 is disjoint from K1 so that S1 is also

disjoint from K1. It follows that one side of S1 is an empty ball with respect to both K1 and
K2 so that a(1) = 1 by (T4).

Then, notice that the side of S0 in T 1 is, by (T4), the ball not containing K1: it is
disjoint from the torus. For the other compression tangle, as it is illustrated by Figure 5.8,
S0 contains a K2-trivial ball and K1 on one side, and the rest of K2 on the other side. Hence,
a(0) = 0, the small sides disagree at time 0.

In a similar way to Chapter 4, in particular to the proofs of Section 4.3, we now show that
a stays constant on its domain of de�nition. To handle the back and forths, we introduce
a new equivalence relation on spheres. Two intersecting spheres S, S ′ of S3 are said to be
intersection-equivalent if there exists an isotopy between them which stays constant on
their intersection S ∩ S ′, see Figure 5.9.

Figure 5.9: Left: two intersection-equivalent spheres. Right: two spheres that are not
intersection-equivalent: the red sphere has an annulus component that cannot be mapped
to a component of the blue one. Indeed, the components of the blue sphere are discs
and a sphere with 4 punctures.

Two spheres St, St′ , if t and t′ are close enough, are either disjoint or intersection-
equivalent.

Lemma 5.8. Let t be a time of [0, 1]∖ {dj}j. There exists a neighbourhood V of t such that
for all spheres Sv where v ∈ V ∖ {t}, Sv and St are either disjoint or intersection-equivalent.
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Proof. Since we work in a PL setting, surfaces have a naturally polygonal structure. It
follows that on a small enough neighbourhood, these polygons are locally pushed in one
direction or stay in place. Hence, in this neighbourhood, every sphere is either disjoint or
intersection-equivalent to St.

We can now show that under our assumption, a has the same value for two intersection-
equivalent spheres that are close enough for t.

Lemma 5.9. Let t ∈ [0, 1] be a time. There exists V , a neighbourhood of t in [0, 1] such that
a is constant on V ∖ {t}.

Proof. We distinguish two cases depending on whether t is a critical time or not.
-Case 1: let us assume that t is not a critical time and let V be an open connected

neighbourhood of t in [0, 1] ∖ {dj}j. Up to intersection with a neighbourhood provided by
Lemma 5.8, we assume that spheres Sv for v ∈ V are either disjoint or intersection-equivalent
to St. For i in {1, 2}:

�If Sv ⊂ Bi
t, and if we denote by Bi

v the component of S3 ∖ Sv included in Bi
t, by

Proposition 4.20, Bi
v ∈ T i. If both i were in this case, then a(t) = 1 and a(v) = 1.

�If Sv ⊂ (Bi
t)

c, and if we denote by Bi
v the component of S3 ∖ Sv containing Bi

t, Sv and
St are braid equivalent, and by Lemma 4.7 we conclude that Bv ∈ T i. If a(t) = 1 then
a(v) = 1. Otherwise, if a(t) = 0, this argument on one of the i, and the previous one on the
other yields a(v) = 0.

�If Sv and St intersect, they are intersection-equivalent by assumption on V . The idea is
to manage pieces of Sv in the small side of St using the monotony of T i, and the one in the
big side using braid equivalence relations.

Let us denote by I = C(B̊i
t ∩ Sv): the connected components of Sv ∖ St within Bi

t. Since
St and Sv are intersection-equivalent, there is a natural injection ψ : I ↪→ C(St ∖ Sv) which
associates to each I ∈ I, a connected component of C(St ∖ Sv) to which I is isotopic while
keeping St ∩ Sv �xed. There is no dj between t and v. It follows that I and ψ(I) have
the same number of intersections with K: Θ sweeps a braid. Hence, S ′

v = (Sv ∖ ψ(I)) ∪ I
is a sphere (St and S ′

v are isotopic via an isotopy that keeps (Bi
t)

c ∩ Sv �xed) such that
|S ′

v ∩Ki| < k and S ′
v ⊂ Bi

t. Hence, by Proposition 4.20, Ai ∈ T i where Ai is the side of S ′
v

included in Bi
t.

Now, there only remains to deal with C(Sv ∖ Bi
t), the connected components of Sv ∖ St

outside of Bi
t. By pushing S ′

v a bit into Åi so that S ′
v is disjoint from Sv, we get that S ′

v and
Sv are braid equivalent. Let Bi be the side of Sv containing Ai, by Lemma 4.7, Bi ∈ T i.

In this construction, if a(t) = 1, all the small sides coincide so that a(v) = 1. Otherwise,
during the construction, the closed ball Ai ∈ T i lie on di�erent sides of St. Then, each closed
ball Bi

t ∈ T i contains Ai, therefore B1
v ̸= B2

v so that a(v) = 0 too.
-Case 2: let us assume that t = dj for some j. Let V be an open connected neighbourhood

of t in [0, 1] disjoint from the other dj. Up to intersection with a neighbourhood provided
by Lemma 5.8, we assume that the spheres Sv for v ∈ V are either disjoint or intersection-
equivalent to St. We want to show that a(u) = a(v) where u and v are in disjoint components
of V ∖ t. To do so, we use the point at the tangency, and show that it switches sides during
the sweepout.
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Let p be the point of K1 tangent to St at time t (we assume that it is K1 since the knots
play symmetrical roles). Let x be the point of Su such that Θ(x, t) = p. Denote by P the
path followed by x during the sweepout by the spheres between u and v: P = Θ(x, [u, v]).
Let us cover P by a closed ball B that intersects Su and Sv on a single disc each. This ball
is K1-trivial, and we assume that it covers the strand of K1 around p (similarly to the proof
of Lemma 4.8).

Notice that the knot K2 presents no tangency with St in between Su and Sv. So the
method of case 1 applies for T 2 and we remark that p must switch sides for K2, i.e., p ∈ B2

u

if and only if p ̸∈ B2
v . Let us show that the same is true for T 1.

�If p ̸∈ B1
u, we notice that |∂(B1

u∪B)∩K1| < k by our construction of B and assumptions
on St. By (T3), B1

u ∪ B ∈ T 1. Furthermore, by construction, ∂(B1
u ∪ B) and Su are

intersection-equivalent. The methods of case 1 apply here and tell us that the side of Sv

containing p is in T 1.
�If p ∈ B1

u, we notice that |∂(B1
u∖B)∩K1| < k by our construction of B and assumptions

on St. By Proposition 4.20, B1
u∖B ∈ T 1. By construction, ∂(B1

u∪B) and Su are intersection-
equivalent. The methods of case 1 apply here and tell us that the side of Sv not containing
p is in T 1.

Hence, for i ∈ {1, 2} , p ∈ Bi
u ⇔ p ̸∈ Bi

v. This implies that a(u) = a(v), and concludes
our proof.

Proposition 5.10. The agreement a is constant on [0, 1]∖ {dj}j.

Proof. We can cover [0, 1] by open discs from Lemma 5.9 on which a is constant. Since [0, 1]
is compact, only �nitely many of them are enough to cover it. Each connected component
[0, 1]∖ {dj}j is connected, the agreement function is then constant on these components by
continuity of a (a is locally constant). Around each dj, a is constant by Lemma 5.9. Hence,
a is constant on [0, 1]∖ {dj}j.

Proof of Theorem E. The initial discussion of this subsection states that a(0) = 0 and a(1) =
1. This contradicts Proposition 5.10. Thus, our assumption that Top(D(n, n+1), R) < 2

3
n−2

does not hold. Therefore, during the sequence, at least a diagram has at least 2n2 + 2
3
n

crossings.

As corollary:

Corollary 5.11. For each n ≥ 2 there exists a hard split link Dm with m ≥ n crossings and

crossing complexity Unl(Dm) ≥ 2
3

√
1
2
m− 1− 2.

Proof. By Theorem E, Top(D(n, n + 1), R) ≥ 2
3
n− 2 for every Reidemeister move sequence

converting D(n, n+1) to a split diagram. Then, by de�nition, Unl(D(n, n+1)) ≥ 2
3
n−2. The

link diagram D2n2+2 = D(n, n+1) has 2n2+2 crossings, and we have Unl(D2n2+2) ≥ 2
3
n− 2.

Hence form = 2n2+2 ≥ n and the link diagram Dm withm crossings satis�es Unl(Dm) ≥
2
3

√
1
2
m− 1− 2.

To sum up, we showed that the small sides designated by T 1 and T 2 were di�erent at the
start of the sweepout, but that they had to match at the end of it due to the properties of
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our compression bubble tangles. Then we showed that locally these small sides are consistent
with the sweepout, i.e., that points not swept stay on the same side. Doing so we proved
that the small sides of the sphere at t = 1 are both di�erent and the same, which is absurd.

The agreement function allows us to circumvent the impossibility of de�ning an orien-
tation for each sphere similarly to what was done in Chapter 4. This natural orientation
that we would like to de�ne is an arrow pointing outward of the small side with respect to
bubble tangles. However, doing so could lead to a situation where two spheres Su and Sv

are the same, but the associated arrows point in opposite directions. A 2D equivalent of
this behaviour can be pictured by the following sweepout of S2: �rst, start with a circle on a
sphere around the north pole. Then sweep the sphere by making the circle pass through the
latitudes to �nish close to the south pole. And �nally, make this small circle go back to its
initial position by following a meridian. Tracking the small side throughout this operation
should illustrate the aforementioned phenomenon.

Furthermore, from an intuitive point of view, by de�ning two bubble tangles, we made
sure that the sphere and U would sweep at least one of the torus knots, which is enough
to get a contradiction. The agreement function turned out to be a way to formalise this
approach.

5.5 Other settings

We speci�ed our diagrams Dp,q for p = n and q = n+1, but our proof can easily be adapted
to handle any coprime p, q and prove that Dp,q is a hard split link. However, our proof will
provide a lower bound for Unl(Dp,q) that only depends on min(p, q) while the number of
crossings of the diagram is larger than pq −min(p, q). Hence, the lower bound on crossing-
complexity, which depends on the number of initial crossings, is the highest possible on the
diagrams D(n, n+ 1).

Additionally, Figure 5.10 shows a similar setting for which our arguments apply equally
well, so that these diagrams are also hard split links with arbitrarily large crossing complexity.



130 Chapter 5. A lower bound on the complexity of splitting link diagrams

Figure 5.10: A set up with 4 link components. A �rst linked sublink is made of two
unlinked torus knots Tp,q, each linked to the same unknot. The second sublink, is an
unknot (blue), that can be separated from the other sublink by a sphere.



Chapter 6

Perspectives

In this thesis, we shed light on the computational properties of knots and links by drawing
inspiration from techniques and methods of structural graph theory. In the following, we
present some research lines opened up by our results.

6.1 Perspectives on the genus defects

Direct extensions. Our proof of Theorem A allows us to show that any stable property,
or any monotonous invariant for our surface-minor relation, is decidable on Hopf arborescent
links. Identifying any such property or invariant, in particular if it is connected to the
4-dimensional behaviour of knots, is then signi�cant from a computational point of view.

Computing the 4-genus. We are interested in showing the decidability of the smooth
and the topological 4-genus on vast classes of knots. Let us note that our proof could suggest
that we settle this problem on the class of arborescent Hopf links. However, that is not the
case for Hopf arborescent links of unbounded genus. Indeed, a natural approach is to try the
link minor relation for a set of excluded minors characterising the property ∆g(L) ≤ k and
do that iteratively for each k up to the genus of L. However, since our algorithm relies on
hardcoded excluded families of minors, which we do not know, we can not apply it to test
whether ∆g(L) ≤ k for non-constant values of k. Hence, this method could only work on
classes of arborescent Hopf links with bounded genus. But there are �nitely many diagrams
of arborescent Hopf links, and thus this method proves nothing in that regard.

However, the relations that we exhibit remain relevant to study the 4-genus, and they
could be applied successfully to set the decidability of 4-genus on other classes of links.

Relaxing the tree structure. Furthermore, the results of Chapter 3 exploit another key
property of the surfaces associated to the class of knots that we study: their �bredness.
We are interested in relaxing the tree structure of the plumbings to show that the defects
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can be computed on knots obtained as boundaries of �bred surfaces. Such surfaces can be
obtained through plumbings and deplumbings of Hopf bands [94], where the latter operation
corresponds to cutting a band along an arc. This seemingly innocuous operation is in fact
more challenging than it appears. In particular, allowing cutting along any arc makes it
di�cult to exhibit an underlying graph structure for the surfaces obtained and does not
preserve their �bredness in the general case [93].

A line of work close to this question is an open conjecture about whether positive braid
links are well-quasi-ordered in some sense [8]. Similarly to our knots, these links can be
obtained as boundaries of surfaces obtained by plumbing of Hopf bands, except that their
intersection patterns yield planar graphs that are not restricted to trees. However, they are
also in some way more restrictive than our links since only positive Hopf bands are allowed.
The direction of proof that we would like to explore is one inspired by what was presented in
Section 2.2.4. That is to say, when considering a family of positive braid links, either their
graphs admit arbitrarily large grids as minors, or they have bounded treewidth. The latter
case can be handled by the Kruskal tree theorem. The former case requires establishing a
connection between the relation of minors in graphs and the surface-minors.

Computational tractability. Finally, our methods provide the existence of an algorithm
for each value of each defect but no explicit algorithms or upper bound on the complexity
of the problem. We are interested in studying the complexity of computing the defects and
�nding explicit algorithms to compute them.

6.2 Perspectives on spherewidth and bubble tangles

Relation to treewidth. A natural question following this work is whether spherewidth is
equivalent to the minimal treewidth over all possible diagrams of a knot? In other words, is
the treewidth of a knot, up to a constant factor, a lower bound for its spherewidth? This
question could be answered by studying how to recompose the knot and a diagram of the
smallest possible treewidth from the information provided by a sphere decomposition.

The treewidth of the dual graph of the triangulation of a 3-manifold can be a relevant
parameter for the design of FPT algorithms [87]. Hence, the question, similar to the one we
answered in Chapter 4, is whether there exist 3-manifolds which do not admit triangulations
of low treewidth [61]. A promising approach we want to explore is then to try to extend
our obstruction to sweepouts of general 3-manifolds. Since sphere decompositions use only
spheres, they are un�tted for 3-manifolds other than S3. Hence, we need to extend our objects
to surfaces of higher genus.

Algorithm design. Our spherewidth relies at its core on tree-like sweep-outs of S3 high-
lighting an underlying tree structure of the knot. We want to investigate the possibility of
designing parameterized algorithms that exploit our spherewidth. For example, the structure
of the knot inbetween double bubbles of a sphere decomposition is close to a braid with a
bounded number of strands. Algorithms could exploit this braid-like structure to solve a
partial solution to a problem before recomposing solutions along double bubbles.
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Furthermore, the sweep-outs of the 3-sphere could behave particularly well on linkless
graphs that were presented in Chapter 1. An approach to connect branch decompositions
and sphere decompositions when a graph is embedded in S3 is to encapsulate by spheres
the parts of a spatial graph given by a branch decomposition of the abstract graph. It
is di�cult to achieve encapsulating only a given part in general because, for example, the
branch decomposition could indicate only a cycle while some other cycle is linked with the
�rst one in the embedding. This last condition can be avoided when the graph considered is
linkless. Hence, we want to explore further the connections between branch decomposition
of a linkless graph with sphere decompositions of one of its linkless embeddings. A possible
application could be to generalise the celebrated ratcatcher algorithm [133] to the setting of
linkless graphs, thereby showing that the spherewidth, branchwidth, or carvingwidth can be
computed on these graphs in polynomial time.

Compression-representativity. We discussed the challenges of trying to compute the
compression-representativity of an embedding of a spatial graph on a surface in Section 4.6.
We are interested in facing this challenge, as well as the more di�cult version consisting
of computing the compression-representativity of the graph: that is to say, the largest
compression-representativity of a surface on which the graph can be embedded.

As we discussed in Section 4.6, high genus surfaces raise speci�c problems for the com-
putation of compression-representativity. In order to circumvent these, a promising line of
work is to de�ne an obstruction on subsurfaces only. When a family of spheres sweeps ef-
�ciently a surface of high genus, in particular, it sweeps e�ciently each of the handles of
the surface (which can be seen as the neighbourhood of a pair of once intersecting curves).
Hence we want to prove that an obstruction, similar to ours, can be de�ned on handles, and
not the surface as a whole. Since a handle is a torus with one boundary component, its
compression-representativity is easier to compute. Hence, we would provide a lower bound
on the spherewidth, which is a supremum of the compression-representativity of a handle,
taken over all possible handles. The issue �rst discussed here is then partially solved, since
exhibiting any handle with high compression-representativity would yield an obstruction to
spherewidth.

Torus knots. The Theorem D provides a lower bound on the spherewidth of 2
3
of the

compression-representativity. A natural question is whether we can do better than 2
3
. We

conjecture that it is possible to achieve 4
3
in the case of torus knots.

Indeed, for surfaces of genus higher than 1, it is di�cult to designate a small side for
spheres with a number of intersections higher than the compression-representativity: such
spheres can intersect the surface on non-contractible separating curves. In that situation,
both sides of the sphere contain a non trivial part of the topology of the surface. Hence, it is
something that our compression bubble tangles do not handle. However, if a sphere intersects
a torus along a compressible curve, there must be a second one in the intersection. Hence,
in that case, it seems easy to de�ne our compression bubble tangle as long as its order is less
than twice the compression-representativity. However, our proof that it is indeed a bubble
tangle would require �nding a fractional packing of two compressible curves instead of only
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one. The announced bound of 4
3
would be tight: we know a sphere decomposition of torus

knots of such width.

6.3 Perspectives on the hardness of diagrams

Hard split links. Among the lines of research presented in the previous section, one o�ers
to de�ne an obstruction using a handle instead of the whole surface. Using an approach
similar to the one we presented in Chapter 5, this stronger notion of obstruction could
possibly be applied to prove the hardness of other families of diagrams, for example, the one
pictured in Figure 6.1.

U

K

Figure 6.1: A link diagram made of two knots: K, a connected sum of two torus knots
T7,13 (black), and an unknot U (blue).

Hard unknots. Figure 6.2 pictures a diagrammatic construction transforming any con-
nected sum of torus knots into an unknot (see [42]).

Figure 6.2: Obtaining an unknot from torus knots.

These diagrams feature characteristics similar to our examples of hard split links, and
therefore we conjecture that these are hard unknots: when the torus knots are taken to be
increasingly complicated, the number of extra crossings required to untangle the correspond-
ing unknot tends to in�nity.
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Chapitre 7

Introduction en français

Cette thèse se place au sein du domaine de la topologie algorithmique : un domaine mathé-
matique dont le but est de formaliser et traiter les questions topologiques d'un point de vue
informatique. En particulier, nous nous intéressons aux riches connexions qui apparaissent
entre la théorie des graphes et la théorie des n÷uds. Dans ce qui suit, nous présenterons de
manière générale ces domaines en soulignant les liens qui apparaissent entre eux. Ensuite,
nous présenterons plus précisément les contributions et l'organisation de cette thèse.

Ce premier chapitre est destiné à être lisible sans connaissances mathématiques trop
poussées, bien que les concepts et les notions présentés seront plus di�ciles à comprendre
lorsque nous passerons aux contributions.

7.1 Présentation Générale

Topologie. La topologie peut être dé�nie comme la branche des mathématiques qui étudie
les formes. Plus précisément, elle se concentre sur les propriétés qui sont préservées par
les opérations continues, ces propriétés étant appelées propriétés topologiques. Par exemple,
étirer, tordre ou courber sont des opérations continues, alors que découper ou coller ne le
sont pas. Un exemple de propriété préservée par ces opérations continues est la capacité
d'atteindre n'importe quel point d'un objet donné à partir de n'importe quel autre, un objet
satisfaisant cette propriété est appelé connexe. Si un objet est composé d'exactement deux
parties disjointes, aucune opération de pliage, de torsion ou d'expansion ne nous permettra
d'atteindre un point de la seconde partie à partir d'un point de la première partie. Ce n'est
que lorsque les deux parties fusionneront, c'est-à-dire seront collées (ce qui n'est pas une
opération continue), que l'on pourra joindre les deux points susmentionnés et que l'objet
sera connexe. Réciproquement, la �exion, la torsion ou l'expansion ne changeront jamais le
fait qu'un objet est connecté.

Historiquement, la naissance de la topologie peut être attribuée [17, Chapter 10] à Rie-
mann, dont les travaux dans les années 1850 ont conduit à la dé�nition des espaces topo-
logiques, qui sont les blocs élémentaires des théories topologiques. Cependant, des résultats
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fondamentaux comme la formule d'Euler remontent à Descartes au XVIIe siècle (cette for-
mule sera discutée plus loin dans cette section dans la preuve de la Proposition 7.1), et la
notion clé de continuité avait déjà été imaginée par des philosophes grecs tels qu'Aristote.
Aujourd'hui, c'est un domaine de recherche très actif dont les résultats sont répandus dans de
nombreuses branches des mathématiques. Parmi les problèmes du prix du millénaire, qui sont
sept problèmes mathématiques célèbres et très di�ciles sélectionnés par le Clay Mathematics
Institute en 2000, un seul a été résolu [106, 107, 108], il s'agit de la conjecture de Poincaré qui
est de nature topologique. Récemment, avec l'essor de l'informatique théorique, un besoin
de calculer les propriétés topologiques de modèles informatiques est apparu. Ceci a favorisé
le développement de la topologie algorithmique telle que présentée ci-dessus, et a alimenté
des échanges �orissants d'outils, de méthodes et de problèmes à étudier entre la topologie
classique et l'informatique théorique.

Comme présenté plus haut, la topologie se focalise sur les propriétés préservées par opéra-
tions continues. Il est donc naturel que la topologie considère que deux objets sont équivalents
lorsqu'ils ne di�èrent que par une opération continue. Selon l'opération en question, la rela-
tion d'équivalence sera di�érente. L'une de ces relations d'équivalence, des plus fondamen-
tales, découle des homéomorphismes : un homéomorphisme est une application bijective
et continue entre deux espaces dont la bijection réciproque est elle aussi continue. Toutes
les propriétés topologiques intrinsèques à deux objets homéomorphes sont les mêmes. Par
exemple, R et R∗

+ sont homéomorphes par la fonction exp : R→ R∗
+. Cependant, il n'existe

pas d'homéomorphisme entre [0, 1] et R car ils sont topologiquement di�érents. Une di�é-
rence topologique entre [0, 1] et R est le fait que partout dans R il est possible de se déplacer
vers l'avant et l'arrière, ce qui n'est pas le cas aux extrémités de [0, 1] où seul un de ces
mouvements est possible (voir Figure 7.1).

−1 0 1

(
) ∼

S1

) (. . . . . .
R

∼

(
0 1

∼
X

∼
X

∼
Homeomorphisme

∼
X

Aucun

homeomorphisme

Figure 7.1 : Deux objets non homéomorphes à ]−1, 1[ au voisinage des points présentés
(3 ou seulement 1 direction de déplacement sont possibles) tandis que S1 (un cercle) et
R sont localement homéomorphes à ]− 1, 1[.

Intuitivement, cette notion de nombre de directions de déplacement, ou nombre de degrés
de liberté autour d'un point est ce que l'on appelle la dimension d'un objet. Pour l'instant,
cette dé�nition est vague, car elle peut dépendre du point considéré. Soyons plus formels
et dé�nissons plus précisément un objet commun étudié en topologie appelé n-variété. Un
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ensemble M est une n-variété si localement il ressemble à l'espace a n dimension Rn, c'est-
à-dire si pour chaque point de M il existe un voisinage homéomorphe à la n-boule ouverte
unité de Rn : {x ∈ Rn | ∥x∥ < 1} = Bn. Cette dernière propriété est naturellement préservée
par les homéomorphismes. Par conséquent, tout ensemble homéomorphe à une n-variété est
aussi une n-variété. Ainsi, R est une 1-variété alors que [0, 1] ne l'est pas.

Figure 7.2 : Trois S1, c'est-à-dire trois objets homéomorphes à un cercle.

Nous pouvons d'ores et déjà classer les 1-variétés connexes. S'il est possible, en partant
d'un point et en gardant une direction, d'atteindre à nouveau ce point de départ, alors la 1-
variété est en fait homéomorphe à un cercle noté S1. Un tel cercle est communément décrit par
{(x, y) ∈ R2 | x2 + y2 = 1}, et nous dirons que la 1-variété est un S1 (voir Figure 7.2). Sinon,
la marche précédente ne se terminera jamais et l'ensemble est une ligne, c'est-à-dire qu'il
est homéomorphe à R. Plus généralement, comme il est commun pour les topologues, nous
abrégerons l'expression � est homéomorphe à � par � est �. Ainsi, une n-sphère notée Sn, est
toute n-variété homéomorphe à la sphère euclidienne unité de Rn+1 : {x ∈ Rn+1 | ∥x∥ = 1}.
En particulier, nous choisissons la sphère unité comme représentant, mais n'importe quel
rayon donnerait une dé�nition équivalente puisque augmenter ou diminuer le rayon d'une
sphère sont des opérations continues.

Avant de passer aux surfaces, qui sont les 2-variétés, introduisons une deuxième propriété
topologique qui sera un concept clé dans le reste de cette section : la plongeabilité. En e�et,
une opération topologique fondamentale est celle de plongement. Un plongement j : X → Y
d'un objet X dans un objet Y est un homéomorphisme f de X sur son image f(X). Si une
telle application existe, on dit que X est plongeable dans Y . Puisque la composition de
deux homéomorphismes est un homéomorphisme, il s'ensuit que la notion de plongeabilité
est une propriété préservée par homéomorphismes.

Comme [0, 1] peut être plongé dans R par l'inclusion naturelle, et R dans [0, 1] par 1
2
+

1
π
arctan, nous ne pouvons pas distinguer [0, 1] et R par leurs plongements. En e�et, les objets

dans lesquels ils peuvent être plongés, ou les objets qui peuvent être plongés en eux sont les
mêmes. Cependant, une telle notion nous permet de distinguer les deux 1-variétés que sont
R et S1 : R se plonge dans S1 =

{
eiθ | θ ∈ [0, 2π)

}
1 ⊂ C via x 7→ ei arctan(x) mais il n'y a pas

de plongement de S1 dans R puisqu'un tel plongement nécessiterait deux chemins disjoints
dans R joignant les images de deux points disjoints de S1.

1Notez que cette description de S1 par ϕ : [0, 2π) → S1 telle que ϕ(θ) = eiθ est un exemple de bijection
continue qui n'est pas un plongement : la bijection réciproque ϕ−1 n'est pas continue en ϕ(0). De fait, la
limite de ϕ−1 en ce point, par continuité, est 0 d'un côté et 2π de l'autre.
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Surfaces. Gagnons une dimension et concentrons-nous maintenant sur les 2-variétés ap-
pelées surfaces. D'abord, considérons quelques exemples. Le plan R2 et la 2-boule unité
ouverte sont tous deux des surfaces : autour de chaque point de ces deux objets, il existe
un voisinage homéomorphe à une 2-boule ouverte (prendre n'importe quel disque assez petit
convient). Comme il est illustré sur la Figure 7.3, et ce à une petite courbure près, la propriété
précédente est aussi véri�ée sur le tube in�ni R × S1 et le tore T = S1 × S1 qui peut être
décrit comme la surface d'un donut.

0

1

−1

1−1

T

S2

R× S1

∼ ∼

∼∼

∼ Homeomorphisme

Figure 7.3 : Quelques exemples de surfaces, un voisinage de chacun des points est
homéomorphe à une boule unité ouverte représentée au milieu.

Soulignons à nouveau que nous considérons généralement les objets à homéomorphisme
près. Par conséquent, nous ne faisons pas de di�érence entre un cube et une 2-sphère ou entre
un disque ouvert et un triangle, comme le montre la Figure 7.4. Une description commune
de ce phénomène consiste à se représenter chaque objet comme s'il était élastique.

Nous allons maintenant expliquer pourquoi, parmi les exemples de surfaces précédents, le
tore est topologiquement plus complexe que les autres surfaces. Ceci sera illustré par les trans-
formations continues qui peuvent être appliquées à une courbe : qui est un dessin continu
d'un cercle S1 sur la surface considérée (il n'est pas nécessaire qu'il s'agisse d'un plongement).
Si une telle courbe peut être continûment contractée en un point, on dit qu'elle est contrac-
tile, sinon elle est non contractile. Sur une 2-sphère S, toute courbe est contractile (voir
Figure 7.5). En e�et, quitte à les imaginer comme des élastiques se déplaçant continûment
sur S, nous pouvons déplacer ces courbes de façon à ce qu'elles restent sur une calotte de
la sphère qui �nira par se rétrécir jusqu'à un point (imaginez l'équateur glissant vers le pôle
nord de la sphère de la Figure 7.5).

Sur le tore, il existe des courbes non contractiles, dont deux sont visibles sur la Figure 7.5,
en rouge et en vert. De notre point de vue qui considère tout à déformation continue près sur
la surface, ces courbes non contractiles ne sont pas triviales : elles ne sont pas équivalentes
à des points alors que les courbes contractiles le sont. De telles courbes non contractiles
témoignent de l'existence d'un trou dans le tore qui n'existe pas dans les 2-sphères. Parmi
les surfaces de la Figure 7.3, seules la surface en bas à droite et T, le tore, admettent des
courbes non contractiles. Il est intéressant de noter que la surface en bas à droite possède
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∼=

∼= ∼= ∼=

Figure 7.4 : Quelques surfaces homéomorphes à : la 2-sphère (en haut à gauche), la 2-
boule unité ouverte (en haut à droite) et le tore (en bas). La relation d'homéomorphisme
est notée par ∼=.

Figure 7.5 : Quelques courbes non contractiles du tore, un méridien en rouge et une
latitude en vert. Les autres courbes, en noir, peuvent être continûment contractées en
un point.

intuitivement deux trous (deux courbes non contractiles distinctes et disjointes) alors que le
tore n'en possède qu'un seul.

Les exemples précédents de surfaces présentent une autre di�érence topologique : cer-
taines d'entre elles sont compactes, comme la 2-sphère et le tore, alors que R2, la 2-boule
ouverte B2 ou le tube in�ni S1 × R ne le sont pas. Ces dernières surfaces présentent une
sorte de comportement in�ni que les premières n'ont pas. La dé�nition précise d'un ensemble
compact nécessiterait un niveau de détail dépassant les ambitions de cette section. Nous
nous contenterons donc de ce qui suit : une surface n'est pas compacte si l'on peut trouver
une suite de points de l'ensemble qui converge � en dehors � de l'ensemble, comme la suite
(1− 1

n
, 0)n∈N dans le 2-disque ouvert unité qui converge vers (1, 0), qui est � en dehors � du

disque. Du point de vue informatique, la propriété de compacité est particulièrement utile.
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En e�et, les surfaces compactes peuvent être décrites par des triangles fermés collés sur leurs
bords : elles peuvent être triangulées par un nombre �ni de triangles [130]. Par exemple, les
tores sont souvent représentés par un rectangle dont les côtés opposés sont identi�és (voir le
bas de la Figure 7.6) : en collant deux de ces côtés, on obtient un tube. La dernière étape
consiste à coller ses extrémités pour obtenir le tore.
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Figure 7.6 : Représentation d'une 2-sphère et d'un tore par identi�cation de paires de
segments sur les bords de triangles en accord avec les liens gris et les orientations.

Les surfaces compactes peuvent être données comme entrées à des ordinateurs, ou leurs
équivalents abstraits que sont les machines de Turing, grâce à leurs descriptions par un
nombre �ni de triangles et la façon dont ils sont collés sur leurs bords. Une telle représentation
discrète peut être surprenante, car la topologie se focalise sur des structures et opérations
continues qui semblent être en opposition avec une description discrète. Cependant, ce n'est
pas le cas : ces représentations discrètes sont équivalentes aux continues. Elles englobent donc
l'ensemble des propriétés topologiques des surfaces tout en étant beaucoup plus commodes à
manipuler algorithmiquement. C'est pourquoi les pratiquants de la topologie algorithmique
ont tendance à préférer les variétés compactes à celles non compactes.

Nous avons vu précédemment que S2 et R2 n'ont pas de courbes non contractiles. En
fait, ils ont une topologie très similaire, à tel point qu'ils sont identiques à un point près :
il existe un homéomorphisme que nous désignerons par ϕn entre chaque Rn et Sn ∖ {N}
où N est le � pôle nord � de Sn. Détaillons la construction de cet homéomorphisme, appelé
projection stéréographique (voir Figure 7.7). Nous commençons par placer Sn sur Rn

vu comme un hyperplan de Rn+1. Ensuite, pour chaque point x de Rn, nous dé�nissons la
demi-droite ℓx commençant à N = (0, . . . , 0, 1) et passant par x. Il y a exactement un point
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. . . . . .
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ϕ1(x)

(0, 1)
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Figure 7.7 : Gauche : la ligne réelle R compacti�ée par l'application ϕ1 en S1, qui est
représentée ici par la sphère unité de R2. Droite : le plan R2 compacti�é par l'application
ϕ2 en S2, qui est représenté ici par la sphère unité de R3.

d'intersection entre ℓx et Sn : il s'agit de ϕn(x). Remarquons qu'intuitivement, � l'in�nité �
de Rn est envoyée sur N par continuité. Puisque Sn est compact alors que Rn ne l'est pas,
nous dirons que Sn est la compacti�cation d'Alexandrov de Rn. La projection stéréographique
nous permet de réduire les problèmes dans Rn à des problèmes dans Sn, qui sont des variétés
que nous pouvons manipuler plus facilement d'un point de vue algorithmique.

En�n, le fait que toute 2-variété puisse être triangulée est également véri�é par les 3-
variétés [96, 130]. Dans ce dernier cas, les éléments constitutifs ne sont pas des triangles mais
des tétraèdres (la 2-sphère, représentée en haut à droite de la Figure 7.6, si elle était remplie
à l'intérieur, serait un tétraèdre) qui sont collés sur leurs faces triangulaires. Cela signi�e que
les 3-variétés peuvent également être données en entrée aux machines de Turing et étudiées
par l'informatique théorique. Cette propriété essentielle n'est pas véri�ée par les n-variétés
lorsque n ≥ 4 et ceci est révélateur du fait que les espaces de basse dimension se prêtent
particulièrement bien aux questions algorithmiques. Au contraire, en haute dimension, de
nombreuses questions ne peuvent même pas être posées dans un cadre algorithmique.

Les triangulations de surfaces peuvent en pratique être observées sur de vielles images de
synthèse en 3D, où les triangles qui composent les surfaces représentant des objets peuvent
être distingués. Aujourd'hui, ces triangles sont plus di�ciles à délimiter, ils sont su�samment
petits pour créer l'illusion d'une surface continue et lisse. Cependant, les triangulations sous-
jacentes rendent les calculs et simulations possibles. De plus, de la même manière que les
courbes non contractiles sont essentielles pour dé�nir les trous dans les surfaces, et sont donc
constitutives du comportement topologique des surfaces, les surfaces au sein des 3-variétés
sont constitutives de leurs propriétés topologiques. Ainsi, les calculs impliquant des 3-variétés
exploitent souvent des surfaces. Il va sans dire que les calculs impliquant des 3-variétés sont
importants puisque l'espace dans lequel nous vivons est, à notre échelle, une 3-variété : il
s'ensuit que les simulations du monde réel ont besoin de surfaces, et d'une compréhension
algorithmique de celles-ci.

Graphes. Comme nous l'avons expliqué, les structures discrètes sont très pratiques pour
des considérations algorithmiques. Il est donc naturel de s'intéresser aux graphes, qui oc-
cupent une place majeure au sein des mathématiques et de l'informatique ; leur étude est



7.1. Présentation Générale 153

l'objet de la théorie des graphes. Un graphe se compose d'une paire d'informations : d'une
part, un ensemble de points appelés sommets, et d'autre part, des liens entre eux, appelés
arêtes. Les arêtes et sommets peuvent être complétés par d'autres informations, telles que
des poids, des couleurs, des orientations ou des étiquettes. Par conséquent, en tant que struc-
tures mathématiques, ils sont très �exibles pour englober des informations sur les objets et
les relations entre eux, ils ont donc un très large éventail d'applications en tant que modèles.
Tout organigramme d'entreprise, carte de métro, réseau ou diagramme de dépendance est une
sorte de graphe. Les graphes sont souvent décrits visuellement, en représentant les sommets
par des points et les arêtes par des segments entre eux (voir Figure 7.8 par exemple). En fait,
nous avons déjà représenté certains graphes, puisque la Figure 7.6 peut être vue comme un
graphe dont les sommets sont les segments composant le bord de chaque triangle tandis que
les arêtes sont les liens gris représentant leurs identi�cations.

Le papier fondateur de la théorie des graphes est un papier publié en 1736, écrit par Leon-
hard Euler, sur les sept ponts de Königsberg [39]. Son objectif était de prouver l'insolubilité
d'un vieux dé� mathématique lancé par les habitants de Königsberg. Ce dé�, qui demande de
trouver un parcours de la ville empruntant chacun de ses ponts exactement une fois, n'a pu
être prouvé insoluble avant d'être formalisé dans le cadre de la théorie des graphes. Comme
nous voulons mettre l'accent sur les liens entre la théorie des graphes et la topologie, il est
signi�catif que cet article soit aussi souvent cité comme étant fondamental pour la naissance
de la topologie puisque les questions dont il traite sont de nature topologique.

Les graphes étant des objets plutôt compréhensibles, certains résultats célèbres de théorie
des graphes sont également accessibles. Le théorème des 4 couleurs est l'un d'entre eux : il
stipule que toute carte géographique peut être colorée avec quatre couleurs de telle sorte que
deux régions limitrophes aient des couleurs di�érentes. Ce théorème, qui s'exprime naturel-
lement dans le cadre de la théorie des graphes, a résisté à des tentatives de preuves pendant
plus de 100 ans avant qu'une preuve assistée par ordinateur ne réussisse en 1969 [59]. La
théorie des graphes est actuellement un domaine de recherche très actif qui présente des in-
teractions importantes avec d'autres domaines des mathématiques et de l'informatique tels
que l'algèbre, les probabilités, la science des données et, plus important encore pour nous, la
topologie.

G1 G2 G3 G4

Figure 7.8 : Quelques exemples de graphes. Parmi eux, G1 est un arbre et G4 est le
graphe complet K10.

Plongeons maintenant dans quelques dé�nitions et propriétés des graphes en utilisant les
4 graphes de la Figure 7.8. Un chemin sur un graphe est une séquence de sommets distincts
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tels que chacun d'entre eux est relié au suivant par une arête. Comme en topologie, on dit
qu'un graphe où toute paire de points peut être reliée par un chemin est connexe. Tous les
graphes de la Figure 7.8 sont connexes, à l'exception de G2 dont un sommet est isolé. Un
cycle est un chemin, sauf au niveau de ses extrémités qui doivent être identiques. Vu comme
un espace continu, c'est-à-dire si les arêtes sont vues comme des segments qui sont collés
sur leurs extrémités quand ils partagent un sommet, un cycle est une courbe non contractile
plongée dans le graphe. Certains problèmes peuvent être réduits à la recherche d'un cycle
spéci�que dans un graphe donné : si l'on cherche une visite exhaustive et passionnante d'un
pays (visiter deux fois la même ville est ennuyeux), cela revient à chercher un cycle visitant
chaque sommet exactement une fois.

Permettez-nous d'ouvrir une parenthèse sur la complexité algorithmique. Nous pouvons
doter les arêtes précédentes de la longueur correspondant à la route qu'elles représentent.
Dans ce graphe, le problème de la recherche d'un cycle de longueur minimale passant par
chaque sommet est connu comme un problème informatique particulièrement di�cile à ré-
soudre, appelé problème du voyageur de commerce. Ici, di�cile ne signi�e pas trouver un
moyen de calculer la solution, puisqu'il existe un algorithme plutôt naïf qui résout le pro-
blème : cet algorithme opère en énumérant toutes les séquences de visite des sommets pos-
sibles et garde en mémoire le cycle le plus court. Le temps d'exécution d'un algorithme
est le nombre d'opérations élémentaires e�ectuées par l'algorithme, qui est fonction de la
taille de l'entrée. Plus ce nombre est élevé, plus l'exécution de l'algorithme prend du temps.
Trouver un algorithme ayant le meilleur temps d'exécution possible, et classer les problèmes
en fonction de ce meilleur temps d'exécution possible, est l'un des principaux objectifs de
l'informatique. Pour notre algorithme naïf, étant donné qu'il y a n! ordres de visite où n
est le nombre de sommets, il faudra énormément de temps pour l'exécuter car chaque ordre
doit être considéré. Le problème est par conséquent appelé di�cile, car nous ne connaissons
pas encore d'algorithme s'exécutant en un temps meilleur qu'exponentiel qui résoudrait ce
problème dans le cas général.

Pour en revenir aux cycles dans les graphes, le graphe G4, appelé graphe complet sur 10
sommets, contient une arête entre chaque paire de sommets, et donc beaucoup de cycles. On
désignera par Kn le graphe complet sur n sommets. À l'opposé, les graphes peuvent aussi ne
pas avoir de cycles, comme G1 par exemple. Un graphe qui est à la fois connexe et sans cycle
est appelé un arbre. À cet égard, les arbres ont une topologie très simple. Ils sont donc très
intéressants et utiles : comme les sphères, ils n'ont pas de courbes non contractiles. Une autre
de leurs propriétés est qu'il existe un chemin unique entre chaque paire de leurs sommets.
Comme exemple de leurs utilisations, les arbres sont souvent employés en informatique comme
structure de données e�cace. On peut aussi vouloir organiser des tâches à accomplir pour
un processus dans un graphe de dépendance : les sommets sont les tâches à accomplir et
les arêtes sont les dépendances entre elles. Ici, les arêtes sont orientées : si une première
tâche est liée à une autre par une arête orientée, cela signi�e que la première tâche doit être
achevée avant que la suivante ne commence. Il est donc crucial qu'aucun cycle n'apparaisse
structurellement lors de la création d'un tel graphe de dépendance.

Les graphes peuvent avoir plusieurs arêtes entre deux sommets, comme G3 ou même une
arête allant d'un sommet à lui-même, comme le sommet isolé de G2, une telle arête est appelée
une boucle. Les graphes peuvent être bipartis : leurs sommets peuvent être séparés entre
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deux ensembles, de sorte qu'il n'y ait pas d'arête entre deux sommets du même ensemble.
Les graphes G1 et G2 sont tous deux bipartis, les couleurs des sommets décrivant la division
susmentionnée. Tout arbre est biparti : si l'on �xe d'abord un sommet v dans l'arbre, et que
l'on colore les autres en fonction de la parité du nombre d'arêtes sur l'unique chemin qui les
relie à v, on obtient la partition souhaitée. Remarquez que les cycles des graphes bipartis
doivent être de longueur paire. Comme il y a autant d'arêtes que de sommets dans les cycles,
et que ces sommets alternent entre les deux ensembles de la partition, il y a un nombre pair
de sommets, et donc un nombre pair d'arêtes aussi. En�n, nous pouvons dé�nir le graphe
biparti complet Kn,m, c'est le graphe biparti où A a n sommets, B a m sommets, et il y a
une arête entre chaque sommet de A et chaque sommet de B (voir Figure 7.9).

K1,3 K3,5

A

B

Figure 7.9 : Deux exemples de graphes bipartis complets.

D'un point de vue algorithmique, la propriété structurelle d'être biparti présente certains
avantages algorithmiques. Par exemple, il est plus facile de calculer un couplage maximal
dans un graphe biparti, c'est-à-dire un ensemble maximal d'arêtes du graphe qui ne partagent
aucun sommet. De même, de nombreux problèmes algorithmiques sont beaucoup plus faciles
à résoudre dans les arbres, puisqu'ils contiennent peu d'arêtes et pas de cycles. Une idée
fructueuse, d'un point de vue informatique, a été d'identi�er les graphes qui ressemblent à
des arbres et d'y généraliser des algorithmes sur les arbres. C'est pourquoi de nombreuses
mesures ont été mises au point pour déterminer à quel point un graphe est proche d'un arbre.
La largeur arborescente (treewidth) est l'une de ces mesures. Intuitivement, les éléments d'un
graphe de largeur arborescente k peuvent être rangés dans des sacs de taille k+1 et présentés
sous la forme d'un arbre pour former une décomposition arborescente. La �gure 7.10 montre
une décomposition arborescente de largeur 3.

Figure 7.10 : Gauche : un graphe G. Milieu : une décomposition des sommets de G en
sacs. Droite : une décomposition arborescente de G.

Les décompositions arborescentes doivent véri�er plusieurs propriétés, mais nous ne vou-
lons pas trop nous étendre sur les dé�nitions techniques ici. Pour les besoins de cette in-
troduction, il est su�sant de dire que la largeur arborescente est la largeur minimale d'une
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décomposition d'arbre et de se concentrer sur les exemples suivants. Certains graphes ont une
largeur arborescente élevée, comme les graphes complets ou les grilles (voir la partie droite
de la Figure 7.11) : ils sont loin d'être des arbres. D'autres graphes, comme les arbres ou les
graphes comme celui de la partie gauche de la Figure 7.11 ont une faible largeur arborescente.

Figure 7.11 : Gauche : un graphe de haute largeur arborescente. Droite : un graphe de
faible largeur arborescente.

Quand nous sommes confrontés à un problème algorithmique sur un graphe de largeur
arborescente k, il est possible de d'abord trouver une décomposition arborescente de largeur k.
Puis, il est possible de résoudre le problème sur chaque sac, et ensuite d'essayer de reconstituer
une solution pour le graphe entier en exploitant l'arbre de la décomposition. Cette approche
s'est révélée être très fructueuse pour de nombreux problèmes algorithmiques.

Graphes planaires. Une question très naturelle se pose à quiconque essaie de dessiner un
graphe de manière à ce qu'il soit facile à lire. Les croisements entre les arêtes constituent
un obstacle à la lisibilité, de sorte que l'on essaie généralement de dessiner le graphe sans
croisements. Par exemple, les deux dessins de la Figure 7.12 représentent le même graphe,
mais celui de droite n'a pas de croisements et est donc plus facile à lire.
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Figure 7.12 : Deux représentations du même graphe, dont une est planaire. Deux
sommets sont adjacents si leurs écritures en binaire di�èrent d'exactement un bit.

D'où la dé�nition suivante : un graphe est dit planaire s'il existe un dessin de ce graphe
dans le plan tel que deux arêtes ne se croisent jamais. Ici, une classe de graphes est dé�nie par
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une propriété topologique, à savoir être plongeable dans le plan ou, puisque c'est équivalent,
dans la 2-sphère.

Cette propriété est particulièrement utile pour certaines applications où les arêtes repré-
sentent des connexions qui doivent être construites. Les circuits imprimés, où les sommets
sont des composants et les arêtes des circuits gravés sur une plaque, ou plus simplement la
conception de routes, où les sommets sont des villes et les arêtes les routes qui les relient, sont
des exemples de ce type d'application. Dans les deux cas, on veut éviter les croisements, car
ils sont coûteux à gérer ; dans nos exemples, ils sont gérés respectivement par un composant
électrique ou un pont.

Voici une célèbre énigme mathématique appelée � énigme des trois maisons �, dont la
première mention remonte à 1913 par H. Dudeney [35] qui l'appelait déjà un vieux problème.
L'objectif est de relier, sans croisement, trois maisons à trois services publics, par exemple le
gaz, l'électricité et l'eau.

Nous encourageons le lecteur qui n'a jamais essayé de résoudre ce problème à tenter de le
faire en gri�onnant sur une feuille de papier, au moins jusqu'à ce qu'il doute de sa faisabilité.
En fait, toute tentative �nira par ressembler à la partie gauche de la Figure 7.13, où toutes
les arêtes sauf une sont dessinées. À ce stade, la dernière arête ne peut pas être ajoutée
entre la maison la plus à gauche et l'installation de gaz. En e�et, la première maison est
enfermée dans un cercle composé de 4 arêtes (celles entre les maisons du milieu et de droite
et les installations d'eau et d'électricité). En e�et, le célèbre théorème de Jordan stipule que
tout chemin entre un point à l'extérieur du cercle (l'usine à gaz) et un point à l'intérieur (la
première maison) croisera nécessairement une arête.

Figure 7.13 : À gauche : une tentative de résolution de l'énigme des trois maisons. À
droite : la seule façon de résoudre ce problème, i.e., en attachant un tube au plan.

Il existe cependant un moyen de résoudre ce problème, en travaillant non pas sur une
feuille de papier, mais sur une tasse. Une fois de plus, nous encourageons le lecteur qui n'a
jamais essayé de résoudre ce problème sur une tasse et qui n'a pas peur de la laver ensuite
à dessiner dessus avec un marqueur. L'essentiel est que les extrémités de la poignée soient
placées sur des faces distinctes. Ainsi, à l'instar de la partie droite de la Figure 7.13, où un
tube est attaché sur ses bords à deux trous faits sur le plan, on pourra dessiner la dernière
arête sans qu'elle ne croise les autres. Ici, en modi�ant la surface sur laquelle on cherche à
tracer le graphe, le problème devient résoluble.
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En topologie, la formulation de ce problème est : � est-ce que K3,3 est plongeable dans
une 2-sphère ? �. Il se trouve que la topologie fournit des outils pour répondre à ce problème.
Les arguments présentés ci-dessus ne sont pas vraiment une preuve, puisqu'ils reposent sur le
fait que � toute tentative aboutira à ceci �. Essayons une approche plus formelle, et prouvons
la Proposition 7.1.

Proposition 7.1. Le graphe K3,3 est non planaire : il ne peut pas être plongé sur une 2-
sphère.

Démonstration. Supposons qu'il existe un plongement de K3,3 dans le plan. Nous appelons
faces les composantes connexes du plan lorsque le plongement en est retiré. Notons respecti-
vement par V , E et F le nombre de sommets, d'arêtes et de faces du plongement. La formule
d'Euler [40] (une liste de preuves est disponible dans [38]), stipule que, pour tout plongement
d'un graphe connexe dans le plan, l'égalité V − E + F = 2 est véri�ée. Dans notre cas,
puisque V = 6 et E = 9, il découle de cette formule que F = 5. Si, pour chaque face f , nous
comptons le nombre δf d'arêtes qui la délimitent, alors chaque arête est comptée deux fois.
Comme tout cycle du graphe a au moins 4 arêtes, puisque le graphe est biparti, on en déduit
alors que 18 = 2E =

∑
f δf ≥ 4F = 20, ce qui est absurde. Par conséquent, K3,3 n'est pas

planaire, et l'énigme des trois maisons n'a pas de solution dans le plan.

Nous avons ainsi établi qu'il existe des graphes planaires et des graphes non planaires.
Une question naturelle qui suit est de savoir s'il existe une caractérisation de la planarité pour
les graphes. Kuratowski a prouvé qu'une telle caractérisation existe en 1930 [77], et Wagner
a prouvé en 1937 une caractérisation similaire [139] : un graphe est planaire si et seulement
si on ne peut pas � trouver � K5 ou K3,3 en lui (voir Figure 7.14). Le terme � trouver � ici est
volontairement �ou, en e�et il y a une subtilité dans sa dé�nition dans les deux théorèmes.
Les graphes dont l'absence caractérise la propriété de planarité des graphes dans le théorème
de Wagner, sont appelésmineurs interdits. Ces théorèmes sont très intéressants pour nous,
car une propriété structurelle, c'est-à-dire une information sur les sous-structures présentes
dans les graphes, caractérise l'une de leurs propriétés topologiques.

Figure 7.14 : Les deux mineurs interdits caractérisant les graphes planaires : K5 et
K3,3.

Lorsqu'un graphe planaire est plongé dans R2, on peut dé�nir le graphe dual de ce
plongement de la manière suivante : ses sommets sont les faces du plongement, et pour
chaque arête partagée par deux faces, il existe une arête duale entre les faces la traversant
(voir Figure 7.15). Une telle dé�nition repose en grande partie sur le plongement en question.
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Par exemple, le graphe représenté dans la Figure 7.15 a un sommet incident à une seule
arête, ce sommet implique l'existence d'une boucle dans le graphe dual dont l'extrémité est
fonction de la face sur laquelle ce sommet est plongé (et pour véri�er que le graphe obtenu est
di�érent, il est facile de véri�er que le nombre maximal d'arêtes incidentes à une face-sommet
est bien fonction du plongement). Le graphe dual d'un graphe, comme on peut le voir, est
également planaire.

En outre, la propriété d'être planaire a de fortes implications algorithmiques. L'idée est
que de tels graphes peuvent être découpés en morceaux plus petits, de taille à peu près
équivalente, de telle sorte que les solutions à des problèmes peuvent être déduites de celles
sur les morceaux plus petits. Ils ont en fait une largeur arborescente d'environ O(

√
n), où

n est le nombre de sommets, de sorte que la méthode récursive présentée plus haut fournit
souvent des algorithmes e�caces. Il s'ensuit que certains problèmes, qui peuvent être di�ciles
à résoudre dans le cas général, admettent une solution e�cace lorsque l'entrée est planaire.
L'existence de décompositions arborescentes de faible largeur est déjà un résultat fort en soi.

Figure 7.15 : Un plongement planaire d'un graphe dans R2 et le plongement dual
associé en bleu.

Remarquez que les cycles d'un graphe dual sont des courbes de R2 qui intersectent le
graphe initial au niveau de ses arêtes. Chercher un ensemble d'arêtes dont le retrait rend le
graphe non connexe revient à trouver un cycle du dual. Ce comportement est un premier
exemple des allers-retours qui peuvent être faits entre un graphe et son dual. En fait, l'exis-
tence d'un dual pour les graphes planaires, ainsi que le fait que ce dual est plongé dans R2

sont ce qui permet le calcul rapide des décompositions arborescentes équilibrées susmention-
nées. Par conséquent, la planarité et la dualité ont un impact fort sur les caractéristiques
algorithmiques de ces graphes.

Graphes linkless. En poursuivant sur les propriétés topologiques qui dé�nissent des classes
de graphes, nous présentons ici la classe des graphes linkless. Deux objets de l'espace sont
dits séparés s'il existe une sphère telle que chacun de ces objets se trouve d'un côté di�érent
de la sphère, ils sont dits entrelacés sinon. Par exemple, deux cercles dans l'espace peuvent
être séparés ou non (voir les côtés gauche et droit de la �gure 7.16 respectivement).

Similairement aux graphes planaires, qui sont des graphes qui peuvent être plongés sur une
sphère, les graphes linkless sont des graphes qui peuvent être plongés dans l'espace, c'est-à-
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Figure 7.16 : Gauche : deux cercles de l'espace séparés, ils sont séparés par une sphère.
Droite : deux cercles entrelacés.

dire R3 ou S3, de telle façon qu'il n'y ait aucune paire de cycles disjoints qui soient entrelacés.
Par exemple, tous les graphes planaires sont des graphes linkless, car un plongement sur une
sphère ne peut avoir deux cycles disjoints entrelacés (une petite perturbation de la sphère peut
séparer les cycles). Il s'agit d'une autre classe de graphes dé�nie par une propriété topologique
et, comme pour les graphes planaires, nous verrons que ces graphes sont caractérisés par des
propriétés structurelles.

Dans ce qui suit, nous allons montrer dans les grandes lignes que le graphe complet sur
6 sommets, K6, ainsi que certains graphes qui lui sont associés, sont tous non linkless. En
d'autres termes, tout plongement de K6 dans l'espace aura au moins une paire de cycles
disjoints entrelacés. Dans la Figure 7.17, nous présentons un plongement de K6, noté K, pour
lequel il y a exactement une paire de cycles disjoints qui sont entrelacés. La présentation
utilisée ici est ce que nous appellerons grossièrement une projection : un dessin à partir d'un
point de vue �xe de l'espace du plongement du graphe dans l'espace, où les ambiguïtés concer-
nant quelle partie est au-dessus de l'autre sont levées par des informations supplémentaires.
Nous présentons sur cette �gure les seules paires de cycles disjoints qui pourraient être liées,
puisqu'une telle paire doit avoir au moins un croisement dans la projection.

Pour notre preuve, nous nous inspirons de [25, 125], et dé�nissons pour chaque paire
de cycles disjoints {C,C ′} d'une projection �xée la quantité δ(C,C ′), qui est le nombre de
croisements entre C et C ′ où C est au dessus.

K
δ mod 2 : 1 0 0

Figure 7.17 : Un dessin d'un plongement K de K6 où exactement une paire de cycles
disjoints est entrelacée.
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Proposition 7.2. Le graphe K6 n'est pas linkless.

Sketch de preuve : Dans la suite, nous utiliserons K pour désigner à la fois le plongement
décrit par la Figure 7.17 et sa projection. Similairement, considérons maintenant un autre
plongement de K6, et nous désignerons à la fois ce plongement et sa projection par K′. Il y a
1
2

(
6
3

)
= 10 paires de cycles disjoints dans K6. Pour une projection K, nous allons utiliser une

quantité que nous noterons D(K) ≡ ∑
C1,C2

δ(C1, C2) mod 2 où {C1, C2} sont les paires de
cycles disjoints de K. Seules les paires de cycles {C1, C2} illustrées par la Figure 7.17 peuvent
véri�er δ(C1, C2) mod 2 ̸= 1. Ainsi, par sommation, nous déduisons que D(K) ≡ 1.

Considérons maintenant une transformation continue, une homotopie, qui transforme K′

en K. Cette transformation est autorisée à faire se croiser des paires d'arêtes et des arêtes
elles-mêmes. À petites perturbations près, nous supposons également que ces croisements ne
se produisent pas simultanément, que la projection est régulière tout au long de la transfor-
mation (les croisements sur la projection peuvent se produire entre 3 arêtes au plus, et de
tels croisements impliquant 3 arêtes sont immédiatement résolus) et que les arêtes ne croisent
pas les sommets. Si ce dernier cas se produit, nous poussons l'arête traversante de manière à
ce qu'elle croise les arêtes incidentes au sommet à la place.

Étudions commentD(K′) est modi�é lorsque deux arêtes non incidentes e, e′ se croisent au
cours de cette transformation ; appelons cet évènement une traversée d'arête. Ces deux arêtes
sont présentes dans deux paires de cycles {C1, C2} , {C ′

1, C
′
2}, en fonction de l'association de

chacun des deux sommets restants avec les deux arêtes considérées.
La traversée d'arête va modi�er δ(C1, C2) par ±1 par dé�nition. Chaque cycle contenant e

ou e′ n'est pas modi�é par la transformation. Par conséquent, D(K′) n'est pas a�ecté par cet
évènement (−2 ou 2 est ajouté à la somme modulo 2). La quantité reste aussi la même lorsque
la traversée d'arête prend place entre deux arêtes incidentes. Comme D(K′) ≡ 1 ≡ D(K) à
la �n de la transformation, et que D(K′) n'a pas été modi�é par celle-ci, nous en déduisons
qu'au moins une paire de cycles disjoints était entrelacée au début de la transformation.
Ainsi, tout plongement de K6 dans l'espace a au moins une paire de cycles disjoints qui sont
entrelacés : K6 n'est pas linkless.

Dans [125], H. Sachs mentionne une transformation issue de l'ingénierie électrique, qu'il
appelle � star-triangle-transformation � qui préserve la propriété d'un graphe d'être linkless.
Cette opération, illustrée par la Figure 7.18, et plus communément appelée transformation
∆Y en théorie des graphes, consiste à remplacer une 3-clique (un triangle), par une gri�e
K1,3 (un � Y �) et vice-versa.

Transformation ∆Y

Figure 7.18 : La transformation ∆Y .

La transformation ∆Y préserve le nombre d'arêtes du graphe initial. Ainsi, il y a un
nombre �ni de graphes pouvant être obtenus en appliquant des transformations ∆Y à un
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graphe. Dans le cas de K6, les graphes obtenus de cette manière sont appelés la famille de
Petersen (voir Figure 7.19), dont le nom vient du célèbre graphe de Petersen qui en fait
partie (graphe en bas de la Figure 7.19). Tous ces graphes sont non linkless, il est possible
de véri�er que les propriétés pertinentes de K pour la preuve de la Proposition 7.2 sont
aussi satisfaites par tous les dessins de la Figure 7.19 de telle sorte que la preuve peut être
adaptée. En e�et, il y a une bijection entre les paires de cycles disjoints avant et après une
transformation ∆Y . Le principal argument étant qu'une telle paire est soit disjointe du sous-
graphe a�ecté par la transformation, soit qu'un seul cycle de la paire utilise une arête du
sous-graphe susmentionné. De plus, si le sous-graphe de départ est K1,3, exactement 2 arêtes
sont utilisées.

=

Figure 7.19 : La famille de Petersen : les graphes qui peuvent être obtenus de K6 par
transformation ∆Y . Les 3 sommets blancs à côté de chaque �èche bleue indiquent quel
3-cycle est transformé en un graphe K1,3. Le graphe de Petersen en bas est aussi présenté
sous sa forme commune en couleurs plus claires.
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Remarque 7.3. Comme dit plus haut, la Figure 7.19 présente des plongements des graphes
de la famille de Petersen faits à la fois pour adapter la preuve de la proposition 7.2 et
comprendre quel triangle est transformé en gri�e. Cependant, il n'est pas évident en regardant
cette image que choisir un autre triangle pour les transformations ∆Y donne le même graphe.
Ceci est vrai, sauf pour le graphe en haut à gauche où le 3-cycle induit par les 3 sommets de
degrés 5 produit un graphe non homéomorphe aux graphes induits par les autres triangles. Il se
trouve que les graphes de cette famille présentent de très nombreuses symétries intrinsèques,
ce qui explique le rôle symétrique joué par presque tous les triangles. Une présentation de
cette famille soulignant ces symétries peut être trouvée ici [2].

Robertson, Seymour et Thomas ont annoncé [113] puis prouvé [114], que cette famille
est exactement l'ensemble des mineurs interdits qui caractérise les graphes linkless. C'est un
autre exemple de classe de graphes où l'ensemble des mineurs interdits la caractérisant est
connu.

D'un point de vue algorithmique, les classes de graphes caractérisées par des mineurs
interdits sont intéressantes. Nous avons vu que les graphes planaires admettent des décom-
positions très utiles permettant à des problèmes d'être résolus e�cacement sur eux. En fait,
cette propriété est satisfaite par toute classe de graphes caractérisée par des mineurs interdits
[110]. Néanmoins, en comparaison aux graphes planaires, peu de problèmes sont connus avoir
une amélioration conséquente de leurs temps d'exécution sur les classes de graphes caracté-
risées par mineurs interdits. Sur les graphes linkless par exemple, les propriétés topologiques
associées aux plongements sont plus dures à exploiter (une exception notable étant [132]).

Théorie des n÷uds La dernière classe de graphes que nous avons abordé est dé�nie par des
propriétés topologiques de leurs plongements dans S3 ou R3. Nous plongeons maintenant plus
profondément sur cette idée en étudiant les n÷uds, qui sont des plongements de S1 dans R3

(ou S3 de manière équivalente) considérés à une déformation continue près, appelée isotopie
ambiante (voir Figure 7.20 pour des exemples de tels plongements). Une isotopie ambiante
est, grossièrement parlant, une transformation continue non dégénérée qui ne s'auto-intersecte
pas.

Intuitivement, si nous prenons une corde et la nouons, puis considérons toutes les trans-
formations continues qui peuvent être appliquées dessus, il est toujours possible de la dénouer
en inversant les mouvements qui ont été faits pour nouer. En conséquence, nous collons les
extrémités de la corde de telle sorte que di�érents n÷uds apparaissent : il n'est plus possible
de systématiquement dénouer de tels n÷uds. L'idée est qu'un n÷ud reste le même tant que
nous manipulons la corde, nous pouvons l'agrandir, la courber, la tordre tant que nous ne la
coupons pas pour la recoller plus tard (cette dernière partie est une opération non continue
qui modi�e le n÷ud).

Les n÷uds sont tous homéomorphes au cercle S1, et c'est un bon moment pour souligner
que toutes les propriétés topologiques intrinsèques de deux objets homéomorphes sont les
mêmes. Cependant, les n÷uds sont des plongements sur lesquels les déformations continues
que nous considérons sont distinctes des homéomorphismes : ces déformations préservent
les propriétés topologiques des plongements, qui ne sont pas des propriétés intrinsèques du
cercle.
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Figure 7.20 : Deux n÷uds, i.e., deux plongements de S1 dans R3, le n÷ud à gauche
est appelé n÷ud de huit.

À l'instar des graphes, qui peuvent modéliser un nombre incroyablement élevé d'objets
physiques ou abstraits, les n÷uds sont le modèle naturel à adopter pour comprendre et
étudier tout objet réel qui � ressemble � à une 1-variété. La théorie des n÷uds trouve donc
des applications dans de nombreux domaines scienti�ques. Par exemple, l'ADN peut être
étudié sous cet angle puisqu'il s'agit d'une chaîne en double hélice de nucléotides qui se
nouent sous l'action d'enzymes [111, 63], dont le pliage peut aussi être étudié par la théorie
des n÷uds [64]. En physique, les lignes de champ peuvent être vues comme des n÷uds, et
la théorie quantique des champs s'avère béné�cier d'une compréhension des n÷uds [68]. La
liste pourrait continuer avec l'impression 3D, la chimie ou la conception de matériaux. Pour
en revenir à notre objectif plus théorique, la compréhension des n÷uds est un premier pas
vers la compréhension des plongements d'objets en dimension supérieure, ce qui est à la base
de nombreux autres problèmes.

Cependant, l'étude des n÷uds n'est pas facile. Leur dé�nition seule est à l'origine de la
question fondamentale de la théorie des n÷uds : deux n÷uds sont-ils les mêmes ? En d'autres
termes, étant donné deux plongements de S1, existe-t-il une isotopie ambiante qui transforme
l'un en l'autre ? Cette question semblerait immédiatement très di�cile à quelqu'un qui doit
déterminer si deux pelotes de laine données représentent le même n÷ud (en supposant avoir
collé les extrémités ensemble). En e�et, il faudrait manipuler les �ls su�samment longtemps
pour que les deux n÷uds concrets correspondent visuellement. Et ceci ne fonctionne que si
les pelotes représentent e�ectivement le même n÷ud. En e�et, si ce n'est pas le cas, comment
certi�er que manipuler plus longtemps les n÷uds ne �nira pas par les faire correspondre ?
Trouver une isotopie ambiante entre deux n÷uds est mathématiquement di�cile. En réalité,
c'est aussi di�cile pour les ordinateurs. En outre, cette dernière a�rmation soulève une
question : comment donner un n÷ud en entrée à une machine de Turing ou un ordinateur ?

Tout comme les surfaces qui peuvent être encodées par un nombre �ni de triangles, les
n÷uds peuvent admettre une représentation �nie : une ligne brisée et fermée dans l'espace.
Par exemple, le n÷ud de huit de la Figure 7.20 peut être transformé en la ligne brisée de la
Figure 7.21. Un tel plongement est appelé plongement polygonal. En théorie des n÷uds,
il est courant de se restreindre aux n÷uds qui admettent un plongement polygonal, ce que
nous ferons dans la suite.

Les plongements polygonaux sont une représentation pratique des n÷uds, et de plus,
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Figure 7.21 : Un plongement polygonal du n÷ud de huit.

les n÷uds admettant de tels plongements admettent également des diagrammes. Intuiti-
vement, les diagrammes sont des dessins non ambigus de n÷uds dans le plan. Le dessin
est obtenu grâce à une projection régulière (une telle projection peut être vue dans la Fi-
gure 7.22), qui est une projection où les points à antécédents multiples sont en nombre �ni
et viennent de croisements de brins dans l'espace. L'absence d'ambiguïté vient d'une infor-
mation supplémentaire ajoutée aux croisements désignant quel brin se trouve au-dessus de
l'autre, ceci est généralement représenté par un espace vide à la place du brin inférieur au-
tour de chaque croisement (comme illustré en bas de la Figure 7.22, et qui a déjà été utilisé
dans la Figure 7.17 pour représenter les plongements dans l'espace). Un diagramme peut
être vu comme un graphe planaire plongé tel que chaque sommet a 4 arêtes incidentes (les
sommets proviennent de brins croisés dans la projection), un tel graphe est appelé 4-régulier
(similairement, le graphe G3 de la Figure 7.8 est 3-régulier).

Reidemeister a prouvé en 1927 [138] le théorème éponyme : deux n÷uds, représentés par
deux diagrammes, sont équivalents par isotopie ambiante si et seulement si une séquence
de mouvements de Reidemeister peut transformer l'un des diagrammes (vu comme un
graphe planaire plongé) en l'autre. Les mouvements de Reidemeister sont des modi�cations
locales des brins représentées dans la Figure 7.23. Intuitivement, RI crée ou supprime une tor-
sade sur un brin, RII crée ou supprime un chevauchement entre deux brins, et RIII représente
le fait qu'un brin peut aller et venir au-dessus d'un autre croisement.

Ce théorème est très puissant, car il relie la nature tridimensionnelle des n÷uds à leurs
diagrammes, qui sont des graphes planaires. Il ouvre également des pistes pour résoudre la
question initiale consistant à déterminer si deux n÷uds sont identiques : on peut chercher
une séquence de mouvements de Reidemeister à appliquer qui certi�e l'équivalence entre les
deux n÷uds. Avec cette méthode, il ne reste plus qu'à trouver une telle séquence. Il s'agit
en fait d'une question di�cile. Il n'existe pas de méthode simple pour y parvenir ; intuitive-
ment, il faut essayer tous les mouvements possibles et espérer que les diagrammes �nissent
par correspondre. Cependant, cette recherche ne fait sens que si l'on limite les mouvements
possibles, sinon il est toujours possible d'avoir de plus en plus de croisements par la répétition
des mouvements RI ou RII, ce qui amène à un diagramme très complexe. L'approche natu-
relle consiste alors à essayer uniquement les mouvements qui vont diminuer la complexité du
diagramme, correspondant intuitivement à son nombre de sommets. Cependant, il est prouvé
que la complexité de certains diagrammes devra d'abord augmenter avant qu'elle puisse être
réduite [21]. Ce comportement illustre à quel point ce problème peut être di�cile. Actuelle-
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Diagramme

Figure 7.22 : Une projection régulière du n÷ud de huit dans le plan bleu, et une non
régulière dans le rouge : deux points de la projection ont plus de deux antécédents. En
bas à droite : le diagramme issu de la projection régulière.

RI RII RIII

Figure 7.23 : Les trois mouvements de Reidemeister.

ment, les meilleurs algorithmes connus pour décider si deux n÷uds sont identiques n'utilisent
pas les mouvements de Reidemeister et exploitent plutôt la topologie de � l'extérieur � du
n÷ud. Cependant, le temps d'exécution de ces algorithmes est incroyablement long. Pour
faire écho à nos parties précédentes, soulignons que ces algorithmes utilisent des surfaces
pour mener à bien cette étude.

C'est pourquoi les théoriciens des n÷uds ont tendance à chercher des moyens de distinguer
les n÷uds : des moyens de certi�er que deux n÷uds sont di�érents. Pour ce faire, ils étudient
des invariants des n÷uds. Ces invariants sont des quantités, ou des objets, qui sont les mêmes
pour toutes les présentations possibles d'un n÷ud. Ainsi, si deux plongements ne coïncident
pas sur un invariant, nous savons qu'ils sont di�érents. La réciproque n'est pas vraie en
général, deux n÷uds partageant un invariant peuvent être di�érents. L'invariance de certaines
quantités peut être clairement déduite de leurs dé�nitions. Le nombre de croisements est
l'une d'entre elles : c'est le nombre minimum de croisements qu'un diagramme de n÷uds peut
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avoir. Comme ce nombre ne dépend pas d'un plongement �xe mais de l'ensemble de la classe
d'équivalence , il est clair que cette quantité est un invariant. Certains autres invariants sont
dé�nis par un calcul ou une propriété d'un plongement ou d'un diagramme �xe. Ainsi, pour
prouver leur invariance, il faut prouver que le calcul aboutit au même résultat pour chaque
plongement ou diagramme.

Développons un exemple simple : la tricolorabilité. Un brin d'un diagramme est un arc
continu d'un diagramme lorsqu'il est dessiné en utilisant la convention selon laquelle la par-
tie inférieure du n÷ud est remplacée par un blanc à chaque croisement comme dans les
Figures 7.23 et 7.22 (dans celle-ci, le n÷ud de huit a 4 brins). Un n÷ud est dit 3-colorable
si l'un de ses diagrammes est 3-colorable, c'est-à-dire s'il est possible de colorer, à l'aide de
trois couleurs, les brins d'un diagramme de telle sorte que chaque croisement soit incident
soit aux 3 couleurs, soit à seulement 1 (les trois couleurs doivent également être utilisées au
moins une fois au total). Le théorème de Reidemeister montre que toute paire de diagrammes
d'un même n÷ud sont reliées par une séquence de mouvements de Reidemeister. Il su�t donc
de montrer que si un diagramme est 3-colorable, alors tous les diagrammes de la séquence, y
compris le dernier, le sont aussi. Par contradiction, il est clair que si un diagramme de n÷ud
n'est pas 3-colorable, aucun de ses diagrammes ne l'est.

Proposition 7.4. La tricolorabilité est un invariant de n÷ud.

Démonstration. Poursuivons la preuve ébauchée ci-dessus et considérons une 3-coloration
initiale d'un diagramme de n÷ud, et un mouvement de Reidemeister. Nous ne modi�erons
que la couleur des brins créés par le mouvement de Reidemeister de manière à ce que les
propriétés d'une 3-coloration soient toujours satisfaites aux croisements non impliqués. En
particulier, les couleurs des brins s'étendant à l'extérieur de chaque motif de mouvement de
Reidemeister resteront les mêmes. En fait, la preuve peut être résumée par la Figure 7.23
lorsqu'une seule couleur est impliquée et la Figure 7.24 dans le cas contraire.

�Si le mouvement est RI, un brin est séparé en deux, ou deux sont fusionnés. Dans les
deux cas, ils doivent être de la même couleur (voir la partie la plus à gauche de la Figure 7.23
où la couleur est le noir, par symétrie).

�Si le mouvement est RII, supposons que plus d'une couleur est impliquée (sinon il n'y a
rien à dire). L'image est alors, à changement de couleur près, la partie supérieure gauche de
la Figure 7.24. Si des croisements sont impliqués, ils satisfont la propriété d'un 3-coloriage.

�Si le mouvement est RIII, supposons à nouveau que plus d'une couleur est impliquée
(sinon il n'y a rien à dire). Nous nous référerons à la partie pertinente de la Figure 7.24.
Fixons d'abord la couleur du brin supérieur (disons vert dans notre cas), elle sera inchangée
pendant le mouvement. La partie intermédiaire du n÷ud est constituée de deux brins qui ont
soit une, soit deux couleurs (respectivement en haut à droite et en bas). Le premier cas étant
simple, concentrons-nous sur le second. Soit le croisement n'impliquant pas le brin supérieur
n'a qu'une couleur, auquel cas il s'agirait du cas en bas à gauche ; soit il en a 3 et le cas est
traité en bas à droite. Dans tous ces cas, la propriété de 3-coloration est préservée.

Comme nous l'avons vu, l'invariance de la tricolorabilité admet une preuve assez élémen-
taire et accessible. Utilisons la sur la Figure 7.25 où les trois n÷uds les plus simples sont
représentés : de gauche à droite, le n÷ud trivial (le plongement standard du cercle), le
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RII

RIII

RIII

RIII

Figure 7.24 : Maintien de la propriété de 3-colorabilité pendant le mouvement de
Reidemeister.

n÷ud de trè�e (seul n÷ud avec nombre de croisements égal à 3), et le n÷ud de huit (seul
n÷ud avec nombre de croisements égal à 4). Parmi eux, le n÷ud de trè�e peut être distingué
à la fois du n÷ud trivial et du n÷ud de huit en utilisant cet invariant, puisque le diagramme
du n÷ud trivial n'a qu'une seule couleur : il n'est pas 3-colorable. De même, chaque paire
de brins du n÷ud de huit du diagramme fourni a deux croisements en commun. Puisqu'il y
a 4 brins, au moins deux brins auront la même couleur, et une contradiction est obtenue à
l'un de leurs croisements communs puisque le brin restant doit être d'une couleur di�érente.
Comme dit plus haut, la Proposition 7.4 et la Figure 7.25 prouvent que le n÷ud trè�e est en
e�et di�érent du n÷ud trivial et du n÷ud de huit, mais cet invariant n'est pas su�sant pour
distinguer ces deux derniers n÷uds.

Figure 7.25 : Trois diagrammes de n÷uds. Parmi eux, seul le n÷ud de trè�e, au milieu,
est 3-colorable.

Pour revenir à notre point de vue informatique, les diagrammes de n÷uds sont des graphes
planaires. Il est donc naturel d'essayer d'appliquer les résultats et les méthodes de la théorie
des graphes pour comprendre les n÷uds au travers de leurs diagrammes. Par exemple, certains
invariants de n÷uds qui sont di�ciles à calculer dans le cas général peuvent être calculés
e�cacement lorsque l'un de leurs diagrammes ressemble à un arbre.

Nous avons présenté plus haut une méthode pour traiter des problèmes algorithmiques sur
les graphes à l'aide de décompositions arborescentes. Esquissons un algorithme pour décider
de la tricolorabilité d'un n÷ud de petite largeur arborescente. Naïvement, si un diagramme
a n croisements, il possède n brins qui peuvent donc être colorés de 3n façons. La véri�cation
de la validité de chaque coloration conduit à un algorithme exponentiel. Supposons alors
que le diagramme ait une largeur arborescente d'au plus k pour faire mieux. Une propriété
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des graphes planaires est qu'il est possible de trouver une décomposition en arbre où les
sacs sont délimités par des cercles dans le plan (une telle décomposition est montrée dans la
Figure 7.10). On peut alors énumérer au plus 3k colorations pour les brins de chaque sac et
véri�er la compatibilité avec la coloration des sacs voisins de l'arbre le long des cercles de
la décomposition. Cet algorithme grossièrement présenté est polynomial lorsque k est �xé,
contrairement à l'algorithme naïf exponentiel.2

Thème de cette thèse. Précédemment, nous avons montré comment les propriétés topo-
logiques des graphes dé�nissent des classes intéressantes de graphes. Nous avons également
décrit comment les propriétés topologiques de planarité et d'être linkless pour les graphes sont
caractérisées par des sous-structures dans les graphes. Ces propriétés et leurs conséquences
font partie d'un sous-domaine de la théorie des graphes appelé théorie structurelle des
graphes. Nous avons ensuite souligné comment les graphes peuvent éclairer notre compré-
hension de la théorie des n÷uds. Cette thèse porte sur cette dernière partie : s'inspirer des
résultats et méthodes de la théorie structurelle des graphes pour pousser plus loin notre
compréhension de la théorie des n÷uds.

Présentons brièvement quelques-uns de nos principaux résultats. Comme nous l'avons
illustré ci-dessus avec la tricolorabilité, lorsqu'un n÷ud admet un diagramme de faible largeur
arborescente, cette structure arborescente peut être exploitée pour fournir des algorithmes
e�caces pour calculer des invariants. Cependant, tous les n÷uds admettent des diagrammes
de grande largeur arborescente puisqu'il est toujours possible de manipuler une partie du
n÷ud pour la faire apparaître comme une grille, comme dans la Figure 7.26.

∼=

Figure 7.26 : Un diagramme du n÷ud trivial avec haute largeur arborescente.

Par conséquent, une question naturelle, posée par Burton [22], Makowski et Mariño [86],
est de savoir s'il existe des n÷uds qui n'admettent pas de diagrammes de faible largeur
arborescente. En d'autres termes, ils ont demandé s'il existe des n÷uds pour lesquels les

2En fait, décider de la tricolorabilité peut toujours être fait en temps polynomial en calculant la valeur
du polynôme d'Alexander à −1 [100]. Cependant, la tricolorabilité peut être généralisée aux invariants de
coloration dont le calcul est prouvé impossible en temps polynomial (modulo ses conjectures standards) [76].
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algorithmes exploitant la largeur arborescente ne peuvent pas être utilisés. Cette question a
reçu une réponse positive en 2018 [28] en utilisant des résultats complexes [57] sur la forme
d'une décomposition de l'espace par des surfaces. Nous développons une théorie plus élémen-
taire reprouvant ce résultat qui s'inspire de techniques associées à la largeur arborescente,
donc issues de la théorie structurelle des graphes. Plus précisément, nous dé�nissons une
mesure d'à quel point un n÷ud ressemble à un arbre (c'est aussi un invariant de n÷ud),
ainsi qu'une obstruction à cette mesure. L'invariant, appelé spherewidth, est ce qui relie le
n÷ud à la largeur arborescente de son diagramme : si la spherewidth est élevée, la largeur
arborescente de chaque diagramme est élevée. La spherewidth quanti�e de manière informelle
la meilleure façon de balayer l'espace avec des sphères imbriquées de manière arborescente,
tout en minimisant leur nombre d'intersections avec le n÷ud. L'obstruction, quant à elle,
fournit une borne inférieure à la spherewidth.

De plus, nous prouvons que notre obstruction existe dès qu'un n÷ud peut être plongé sur
une surface. Pour ce faire, nous exploitons les interactions entre les sphères de nos balayages
et cette surface, et en particulier la topologie découlant de ces intersections. Cela nous per-
met de prouver que tous les diagrammes d'une certaine famille de n÷uds ont haute largeur
arborescente. Une telle famille est appelée la famille des n÷uds toriques (un n÷ud torique
peut être vu sur la Figure 7.27). En outre, nos résultats s'appliquent également aux entre-
lacs et aux graphes spatiaux. Il s'agit dans les deux cas de généralisations des n÷uds. Les
entrelacs sont une union disjointe de n÷uds, chacun de ces n÷uds étant appelé composante
d'entrelacs. Par exemple, la partie droite de la Figure 7.16 représente un entrelacs appelé
entrelacs de Hopf constitué de deux composantes d'entrelacs, chacune étant un n÷ud. Les
graphes spatiaux sont des plongements de graphes dans S3. Ces plongements peuvent être
vus comme une généralisation des n÷uds et des entrelacs : ils ressemblent localement à des
n÷uds, sauf aux sommets où ils peuvent se rami�er. Il s'ensuit que leur étude est au moins
aussi complexe que celle des n÷uds et des entrelacs.

Figure 7.27 : Un exemple de n÷ud torique.

Notre obstruction peut également être utilisée pour résoudre un autre problème qui, en
apparence, pourrait sembler sans rapport. Nous avons expliqué précédemment qu'il faut par-
fois d'abord augmenter le nombre de croisements avant d'espérer progresser dans le processus
de démêlage de certains diagrammes de n÷uds par des mouvements de Reidemeister. En fait,
ce comportement peut apparaître sur n'importe quel problème traité par l'application itérée
de mouvements de Reidemeister. Cependant, aucun résultat n'est connu sur le nombre de
croisements qui doivent être ajoutés lors de la résolution d'un problème de cette manière. Une
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autre de nos contributions est de tirer parti de notre obstruction pour fournir des exemples
de diagrammes nécessitant un nombre arbitrairement élevé de croisements ajoutés pour être
simpli�és.

7.2 Contributions de cette thèse

Tandis que la section précédente a été écrite pour être abordée avec relativement peu de
connaissances en topologie et théorie des graphes, il n'en va pas de même pour ce qui suit.
Nous nous référons aux manuels de Schultens sur les 3-variétés [130] (il couvre également les
bases des surfaces), de Diestel sur la théorie des graphes [30], de Rolfsen [120] pour la théorie
des n÷uds, et de Cormen, Leiserson, Rivest, et Stein pour des bases sur les algorithmes [26].

Nous passons maintenant à une description plus précise des contributions de cette thèse,
sans pour autant plonger trop profondément dans leurs spéci�cités. Chaque objet dé�ni ici
sera redé�ni correctement dans le chapitre correspondant. Notre travail apporte des contri-
butions à la théorie des n÷uds en utilisant diverses notions de décompositions arborescentes
reposant sur des surfaces et sur la façon dont ces surfaces interagissent avec les n÷uds. En
outre, l'inspiration et les méthodes utilisées dans nos résultats proviennent de la théorie
structurelle des graphes.

Décidabilité du défaut de genre sur les entrelacs de Hopf arborescents. Comme
nous l'avons expliqué dans la section précédente, le problème de savoir si deux n÷uds sont
équivalents est di�cile à résoudre, tant du point de vue théorique que du point de vue
informatique. C'est pourquoi la théorie des n÷uds a recours à des invariants. Parmi eux,
un invariant classique est leurs genre. C'est le genre minimal possible parmi ses surfaces
de Seifert, c'est-à-dire les surfaces orientées plongées dans S3 ayant le n÷ud comme bord.
Par exemple, le n÷ud trivial est le seul n÷ud de genre 0, c'est-à-dire que le n÷ud trivial
est le bord d'un disque plongé (cette propriété est une dé�nition courante du n÷ud trivial).
Plusieurs algorithmes pour calculer le genre d'un n÷ud sont connus, et la complexité de son
calcul est assez bien comprise : nous savons que le problème est à la fois dans NP et dans
co-NP [4, 82].

En considérant S3 comme le bord de B4, nous considérons une généralisation du genre
des n÷uds que nous appellerons 4-genre : grossièrement, c'est le genre minimal d'une surface
orientée intégrée dans B4 qui a pour bord le n÷ud plongé dans ∂B4. Dans le contexte de
la topologie en dimension 4, les plongements lisses et topologiquement plats sont di�érents.
Cela donne naturellement lieu à deux notions di�érentes de 4-genre : nous nous référons au
Chapitre 3 pour des dé�nitions précises. Comme nos méthodes et nos résultats s'appliquent
aussi bien aux deux, nous continuerons à parler de 4-genre dans la suite de cette introduction.

D'un point de vue algorithmique, la topologie en dimension 4 est di�cile et mal comprise.
D'une part, de nombreux problèmes topologiques fondamentaux, tels que décider si deux
variétés sont homéomorphes, sont connus pour être indécidables en dimension 4 [89]. D'autre
part, la décidabilité de nombreux problèmes fondamentaux, tels que la reconnaissance de la
sphère quadridimensionnelle, est largement ouverte, et aucun cadre général n'est connu pour
aborder ces questions. Le 4-genre fait partie de ces problèmes dont la décidabilité n'est pas
connue dans le cas général. Cet invariant est essentiel à l'étude des n÷uds bordant (slice),
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c'est-à-dire des n÷uds de 4-genre 0, et à des conjectures majeures de la théorie des n÷uds
comme la conjecture bordant-ruban (slice-ribbon conjecture) [41].

Nous étudions une classe de n÷uds et d'entrelacs (qui sont des unions de n÷uds) que
nous appelons entrelacs arborescents de Hopf. Il s'agit de n÷uds et d'entrelacs qui peuvent
être décomposés en un plombage arborescent de bandes de Hopf, où une bande de Hopf est
un anneau plongé dont le bord est un entrelacs de Hopf (voir la gauche de la Figure 7.28, et
la droite pour une telle décomposition). Le défaut de genre est la di�érence entre le genre et
le 4-genre. Nous prouvons le Théorème A qui stipule que, pour tout k, il existe un algorithme
pour décider si un entrelacs arborescent de Hopf a un défaut d'au plus k. Ainsi, nous résolvons
la question de la décidabilité du calcul du défaut sur cette classe de n÷uds et d'entrelacs.

∼=

Figure 7.28 : À gauche : une bande de Hopf. À droite : un plombage de deux bandes
de Hopf réalisant un n÷ud de huit.

Pour prouver ce théorème, nous nous inspirons de la théorie structurelle des graphes en
dé�nissant une relation de mineur, appelée mineur d'entrelacs (link-minor), sur cette classe
d'entrelacs et en prouvant qu'il s'agit d'un bel ordre. Si un ensemble est ordonné par un bel
ordre, toute suite in�nie de cet ensemble contiendra au moins deux éléments comparables.
Cela implique qu'il n'existe aucune antichaîne in�nie dans l'ensemble, i.e. aucune suite
in�nie d'éléments non comparables deux à deux. Ainsi, tout ensemble dé�ni par une propriété
stable pour le bel ordre peut être caractérisé par l'antichaîne �nie des éléments minimaux
de son complément. Cela donne un algorithme pour véri�er si un élément x satisfait cette
propriété lorsque la relation est décidable : il su�t de décider qu'aucun élément minimal n'est
en relation avec x.

Notre technique de preuve suit cette stratégie et consiste à montrer que le défaut de genre
est stable pour la relation de mineur d'entrelacs et à fournir un algorithme pour décider cette
relation. La relation de mineur d'entrelacs repose sur une dé�nition précise des plombages
de Hopf vus comme opérations de construction e�ectuées le long d'arbres. Grâce à cette
dé�nition, nous pouvons associer un arbre et une surface de Seifert particulière à chaque
entrelacs arborescent de Hopf. Tout d'abord, nous utilisons le théorème de Kruskal [73] sur
ces arbres pour prouver que la relation de mineur d'entrelacs est un bel ordre. Ensuite,
nous fournissons un algorithme pour décider de la relation de mineur d'entrelacs. Puis, nous
prouvons la stabilité du défaut par mineur d'entrelacs en étudiant une seconde relation,
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appelée mineur de surface, qui est plus faible que notre relation de mineur d'entrelacs mais
qui se comporte bien par rapport au défaut de genre.

Le mineur de surface est une relation d'inclusion entre les surfaces de Seifert particulières
associées à nos entrelacs. De plus, comme la relation de mineurs d'entrelacs est un bel ordre
plus �n que la relation de mineur de surfaces, nos techniques de preuve produisent également
le théorème B qui stipule que la relation de mineur de surface est un bel ordre sur les surfaces
de Seifert associées à nos entrelacs.

� Nous dé�nissons une classe de n÷uds et d'entrelacs obtenus par plombages itérés
de bandes de Hopf.

� Nous prouvons la décidabilité du défaut sur la classe des entrelacs arborescents
de Hopf. Voir Théorème A.

� Nous prouvons que la relation de mineur de surface est un bel ordre sur la classe
des entrelacs arborescents de Hopf. Voir Théorème B.

Invariant de largeur d'entrelacs et de graphes spatiaux inspiré de la théorie struc-
turelle des graphes. Nous développons davantage le contexte et les concepts abordés dans
la dernière partie de la section précédente. La recherche d'invariants de n÷uds pouvant être
calculés e�cacement est un moyen de contourner la di�culté rencontrée par la reconnaissance
des n÷uds. Une autre méthode e�cace pour s'attaquer aux problèmes di�ciles consiste à dé-
velopper des algorithmes, appelés soluble à paramètre �xé (Fixed-Parameter-Tractable abrégé
en FPT [27]), dont la conception dépend d'une information supplémentaire de l'entrée : le
paramètre. Leur principal intérêt est que la complexité de ces algorithmes est faible lorsque
le paramètre est �xé. La largeur arborescente est un paramètre essentiel à cet égard : la
conception d'algorithmes sur les graphes béné�cie grandement de la structure arborescente
sous-jacente des graphes de petite largeur arborescente (voir pour référence cet exposé de
Bodlaender [14]). L'application de cette méthode aux diagrammes de n÷uds de faible lar-
geur arborescente permet de calculer e�cacement de nombreux invariants de n÷uds (voir
par exemple [86, 19, 87]), qui sont connus pour être di�ciles à calculer dans le cas général.
Comme expliqué précédemment, cet état de fait a conduit à la question [22, 86] de savoir s'il
existe une famille de n÷uds pour laquelle tous les diagrammes ont une largeur arborescente
élevée ; laquelle a été répondue par la positive [28]. Notre travail se concentre sur reprouver
et généraliser cette réponse en s'inspirant de la théorie structurelle des graphes.

La largeur arborescente est également un concept au c÷ur de la preuve du théorème des
mineurs de Robertson et Seymour [118]. Ce paramètre a conduit à la naissance de nombreux
autres invariants de largeur connexes qui peuvent présenter des caractéristiques à la fois
théoriques et pratiques pour la résolution de problèmes. L'un d'entre eux est la largeur en
branches (branchwidth), qui est équivalente à la largeur arborescente à un facteur constant
près. La largeur arborescente et la largeur en branches sont toutes deux dé�nies comme le
minimum du maximum d'une mesure prise sur un ensemble de décompositions. Par essence,
ces invariants sont di�ciles à minorer puisque, pour ce faire, il faut prouver que chaque dé-
composition a une largeur élevée. La largeur en branches est particulièrement intéressante
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pour nous car elle peut être interprétée géométriquement par des balayages arborescents uti-
lisant des cercles d'une sphère sur laquelle un graphe planaire est plongé (rappelons que les
diagrammes de n÷uds sont des graphes planaires) [124]. En outre, il admet une obstruction
optimale, appelée tangle, qui présente des aspects topologiques et dont l'existence permet de
minorer la largeur en branches. Pour être plus précis, un tangle a un ordre qui représente sa
taille, et un graphe admet un tangle d'ordre k si et seulement si la largeur en branches du
graphe est plus grande que k. Par conséquent, le fait de fournir une obstruction de taille k
garantit également que k est une borne inférieure sur la largeur en branches. Ces deux faits
nous ont amenés à concevoir notre invariant de largeur sur les n÷uds, appelé spherewidth,
et inspiré de la largeur en branches. Il repose sur des décomposition en sphères de S3, et
peut être considéré comme une généralisation dans S3, utilisant des sphères, des balayages
de S2 susmentionnés. Formellement, une décomposition en sphères est une application conti-
nue S3 → T où T est un arbre binaire tel que : l'antécédent de chaque feuille est un point,
les antécédents de chaque point dans chaque arête forment une 2-sphère, et les antécédents
de chaque sommet intérieur forment une double bulle. Une double bulle est constituée de
deux sphères qui s'intersectent sur un disque et représente intuitivement le moment où deux
sphères fusionnent (voir Figure 7.29 pour une double bulle et une représentation bidimen-
sionnelle d'une décomposition en sphères). La largeur de la décomposition est alors le nombre
maximal d'intersections entre une sphère de la décomposition et le n÷ud (on peut compléter
la décomposition en sphères illustrée en Figure 7.29 pour qu'elle ait une largeur de 4). La
spherewidth est alors l'in�mum de la largeur de toutes les décompositions en sphères.

Décomposition

en sphères

Figure 7.29 : À gauche : une double bulle. À droite : un exemple de décomposition
en sphère où les antécédents de chaque sommet interne sont représentés en rouge, et les
antécédents d'un point interne à une arête sont en gris.

Puisque les balayages des diagrammes de n÷uds par des cercles peuvent être � relevés �
en des décompositions en sphères, il s'ensuit que la spherewidth est une borne inférieure sur
la largeur en branches des diagrammes, qui est elle-même une borne inférieure de la largeur
arborescente des diagrammes. De manière similaire à la théorie des graphes, nous concevons
une obstruction, appelée bubble tangle, imitant celle dé�nie sur les graphes et minorant la
spherewidth. Nous prouvons par le Théorème C que cette obstruction est également optimale :
pour tout k, il existe soit une décomposition en sphères de largeur k, soit un bubble tangle
d'ordre k, où l'ordre représente également la taille de notre obstruction.

Par ailleurs, nous fournissons des outils pour obtenir une telle obstruction, ce qui constitue
un atout majeur de notre approche. Le Théorème D stipule qu'un bubble tangle d'ordre Ω(r)
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existe dès que le n÷ud est plongé sur une surface ayant une représentativité de compression
(compression representativity) de r. La représentativité de compression quanti�e à quel point
le n÷ud représente la surface sur laquelle il est plongé. Par exemple, le n÷ud torique Tp,q,
lorsqu'il est plongé sur le tore standard associé à sa dé�nition, a une représentativité de
compression min(p, q). Intuitivement, notre obstruction désigne un petit côté pour chaque
sphère ayant un petit nombre d'intersections avec le n÷ud (ceci est à nouveau inspiré de
l'obstruction sur les graphes). Lorsque le n÷ud est plongé sur une surface de genre non nul,
les sphères avec un petit nombre d'intersections avec le n÷ud couperont des disques du tore
d'un côté, tandis que l'autre contiendra la topologie du tore. Le petit côté est alors celui qui
contient uniquement les disques (voir par exemple Figure 7.30).

Figure 7.30 : Une intersection de petite taille entre un n÷ud torique T5,6 plongé sur
un tore et une sphere. Il s'ensuit que la topologie du tore est contenue dans un seul côté,
alors que l'autre ne contient que des disques. Ce dernier côté est le petit côté.

Ainsi, notre travail reprouve, en utilisant de nouvelles techniques inspirées par la théorie
structurelle des graphes, le fait que tout diagramme d'un n÷ud torique Tp,q a une largeur
arborescente de taille Ω(min(p, q)). Plus généralement, nous établissons une méthode systé-
matique pour aborder de telles questions : par l'étude des surfaces sur lesquelles un n÷ud,
entrelacs ou graphe spatial peut être plongé.

� Nous dé�nissons la spherewidth : un invariant de largeur sur les n÷uds et
plus généralement sur les graphes spatiaux inspiré par la théorie structurelle
des graphes. Nous montrons qu'il s'agit d'une borne inférieure sur la largeur
arborescente de tous les diagrammes.

� Nous dé�nissons des bubble tangles : une obstruction à la spherewidth inspirée
par la théorie structurelle des graphes.

� Nous prouvons le Théorème C stipulant que nos bubble tangles sont une obstruc-
tion optimale de la sherewidth.

� Nous prouvons le Théorème D a�rmant qu'un bubble tangle de taille Ω(k) existe
dès qu'il existe une surface sur laquelle un n÷ud, entrelacs, ou graphe spatial peut
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être plongé avec représentativité de compression k.

� Nous reprouvons, en utilisant des techniques élémentaires issues de la théorie
structurelle des graphes, les résultats de [28] stipulant l'existence de n÷uds dont
tous les diagrammes ont haute largeur arborescente.

Une borne inférieure super constante sur la complexité de ltion des diagrammes
d'entrelacs. Comme nous l'avons expliqué dans la section précédente, les mouvements de
Reidemeister sont un outil puissant pour étudier les n÷uds et entrelacs au travers de leurs dia-
grammes, grâce au théorème de Reidemeister. Ils apparaissent comme un outil très pratique
et naturel pour étudier des considérations élémentaires sur les n÷uds, comme leur nombre de
croisements ou leur enlacements. Un exemple de choix de tel problème au sein de la théorie
des n÷uds, est la reconnaissance du n÷ud trivial, qui est une première instance du problème
majeur de la théorie des n÷uds : décider si deux n÷uds sont équivalents ou non. Pour ce
faire, une stratégie naturelle consiste à essayer de démêler un n÷ud donné en appliquant des
mouvements de Reidemeister sur son diagramme de manière exhaustive ou aléatoire jusqu'à
ce que le diagramme corresponde à une courbe simple. Cependant, certains diagrammes de
n÷uds triviaux [21], appelés n÷uds triviaux durs (hard unknots), présentent un compor-
tement gênant pour cet algorithme : le nombre maximum de croisements d'un diagramme au
cours de l'algorithme est plus grand que le nombre initial. Nous devons d'abord ajouter des
croisements avant de pouvoir atteindre le diagramme démêlé.

Formellement, désignons par cr(D) le nombre de croisements dans le diagramme D. En-
suite, pour deux diagrammes équivalents D1, D2 et une séquence de mouvements de Rei-
demeister R transformant D1 en D2, nous dé�nissons Top(D1, R) qui est le maximum de
cr(Di) − cr(D1) tout au long de la séquence de mouvements de Reidemeister où Di est le
diagramme D1 après avoir e�ectué les i premiers mouvements de la séquence. La quantité
qui nous intéresse est Add(D1, D2) qui est le minimum de Top(D1, R) pris parmi toutes les
séquences de mouvements de Reidemeister qui transforment D1 en D2. Si l'on considère D2

comme un diagramme objectif, Add(D1, D2) est alors une borne inférieure sur le nombre
de croisements à ajouter pendant l'exécution de l'algorithme susmentionné qui applique les
mouvements de Reidemeister sur D1 pour atteindre D2.

L'étude de Add(D1, D2) s'avère plus délicate qu'il n'y paraît. A part une recherche exhaus-
tive des mouvements de Reidemeister possibles qui devient rapidement irréalisable, aucune
méthode n'est connue pour minorer cette quantité. Dans le contexte où D1 est un diagramme
de n÷ud et D2 un diagramme de courbe simple, D1 est un diagramme dur si Add(D1, D2)
est positif. En fait, seuls des diagrammes pour lesquels Add(D1, D2) ≤ 2 sont connus [21]
bien qu'il est conjecturé qu'il existe des diagrammes de n÷uds triviaux D pour lesquels
Add(D,D2) est arbitrairement grand.

Nous nous concentrerons sur cette quantité dans le problème de la séparation : décider si
un entrelacs L est séparé, c'est-à-dire s'il existe une sphère disjointe de L séparant au moins
2 composantes d'entrelacs de L. Si une telle sphère existe, il existe un diagramme d'entrelacs
dans lequel deux sous-entrelacs sont séparés et disjoints dans le diagramme : ils sont séparés
par un cercle dans le plan. Par conséquent, en termes de mouvements de Reidemeister, nous
étudierons Add(D1, D2) où D2 est un diagramme d'entrelacs d'un entrelacs L où un cercle
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séparant le diagramme d'entrelacs peut être dessiné dans le plan, et D1 est n'importe quel
diagramme de L. Nous appellerons un diagramme d'entrelacs D1 d'un entrelacs L pour lequel
Add(D1, D2) > 0 un diagramme de séparation di�cile. Trouver une sphère dans l'espace
séparant deux entrelacs est plus facile que de trouver un disque dont le bord est un n÷ud.
Par conséquent, ce problème, qui est intéressant en soi, a été étudié à plusieurs reprises
comme un problème utile et plus facile pour comprendre le problème de reconnaissance du
n÷ud trivial [36, 78].

U

Figure 7.31 : Le diagramme d'entrelacs D(7, 13) : deux n÷uds toriques T7,13 entrelacés
et un n÷ud trivial U .

Nous présentons une famille de diagrammes d'entrelacs D(p, q) où deux sous-entrelacs
sont séparés : le premier sous-entrelacs est constitué de deux n÷uds toriques entrelacés et le
second est un n÷ud trivial entourant l'un des n÷uds toriques (voir D(7, 13) de la Figure 7.31
par exemple). En notant D′(p, q), n'importe quel diagramme d'entrelacs sur lequel U est
disjoint des autres composantes d'entrelacs, nous prouvons le Théorème E impliquant que
Add(D(p, q),D′(p, q)) = Ω(min(p, q)). Si nous appelons complexité de croisement de D1

le minimum de Add(D1, D2) > 0 parmi tous les diagrammes d'entrelacs séparés D2 de L,
nous obtenons des diagrammes de séparation di�ciles dont la complexité de croisement est
arbitrairement grande. Plus précisément, le Théorème E montre que pour tout n, il existe un
diagramme Dn d'un entrelacs séparé Ln dans S3 à 3 composantes tel que toute séquence de
mouvements de Reidemeister le transformant en un diagramme séparé de Ln passe par un
diagramme avec au moins 2n2 + 2

3
n croisements.

La méthode utilisée ici consiste à exploiter le n÷ud U présent dans chacun de nos dia-
grammes et qui est séparé dans S3 des autres composantes d'entrelacs (voir la composante
bleue de la Figure 7.31). Notre approche consiste à montrer que s'il existe une séquence
de mouvements de Reidemeister où Add(D(p, q),D′(p, q)) reste petit, nous pouvons utiliser
l'évolution de U tout au long de ces mouvements pour dé�nir un balayage des deux n÷uds
toriques entrelacés avec des sphères, où chaque sphère a un petit nombre d'intersections
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avec cet entrelacs. Cependant notre obstruction du chapitre 4 a été exactement conçue pour
montrer qu'un tel balayage est impossible. Par conséquent, Add(D(p, q),D′(p, q)) doit être
su�samment grand.

� Nous dé�nissons plusieurs familles de diagrammes d'entrelacs pour lesquelles le
nombre de croisements à ajouter pour séparer l'entrelacs est arbitrairement grand,
tel que stipulé par le Théorème E.

� Nous mettons au point une méthode pour fournir des bornes inférieures sur le
nombre minimal de croisements à ajouter pendant l'exécution d'algorithmes re-
posant sur des essais successifs de mouvements de Reidemeister.

7.3 Organisation

Dans le Chapitre 2, nous passons en revue les préliminaires globaux de notre travail. En
particulier, nous dé�nissons correctement la plupart des concepts qui n'ont été que vaguement
dé�nis dans cette introduction.

Le Chapitre 3 se concentre sur les entrelacs arborescents de Hopf et la décidabilité du
défaut de genre. Nous y présentons les théorèmes A et B de notre article [B], écrit avec Pierre
Dehornoy et Arnaud de Mesmay, paru dans les Proceedings of the 40th International Sympo-
sium on Computational Geometry et invité à un numéro spécial de Discrete & Computational
Geometry du Symposium on Computational Geometry 2024.

Le Chapitre 4 se concentre sur les balayages arborescents de S3 et leurs obstructions.
Notre théorème de dualité, Théorème C, et notre théorème d'existence, Théorème D, y sont
introduits et prouvés. Ce chapitre est principalement issu de notre article [A], écrit avec
Arnaud de Mesmay, paru dans les Proceedings of the 39th International Symposium on
Computational Geometry.

Le Chapitre 5 est le fruit d'un projet mené avec Arnaud de Mesmay et Jonathan Spreer.
Nous y exploitons l'obstruction développée dans le chapitre 4 pour prouver notre Théorème E.

En�n, le Chapitre 6 présente les principales conjectures et lignes de recherche restantes
découlant de notre travail.

De plus, ce Chapitre 7 est une traduction en français du Chapitre 1.
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